Psoriasis – complex mechanisms of pathogenesis and comorbidity: Do we know everything?
https://doi.org/10.21518/ms2025-076
Abstract
Psoriasis is a chronic non-infectious immune-mediated skin disease, which is an important problem for modern medicine. More than 60 million people in the world suffer from psoriasis. This disease worsens the quality of life of patients, can lead to the development of depression, social isolation and disability of patients. Despite the long history of psoriasis studies, scientific research continues to discover new mechanisms of pathogenesis. Psoriasis is associated with genetic disorders and trigger factors of the external and internal environment. The disease is complex and multifactorial. Various immune-dependent cells, cytokines, interleukins are involved in the pathogenesis of psoriasis. Numerous scientific papers have been published on pathological changes in the skin and intestinal microbiota in patients with psoriasis. The “gut-skin” axis is a new concept of the interaction between skin diseases and the microbiome through inflammatory mediators, metabolites and the intestinal barrier. Researchers have shown that disturbances in the balance of the intestinal microbiome are associated with autoimmune conditions such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and psoriasis. Experiments on laboratory animals are of interest, for example, the study of mouse models of psoriasis development. An important role is played by concomitant comorbid pathology, especially metabolic diseases. A number of authors have studied the relationship of psoriasis with metabolic syndrome, diabetes mellitus type 2, non-alcoholic fatty liver disease, obesity, arterial hypertension, and chronic kidney disease. Despite numerous studies, the problem of psoriasis is still relevant and will not lose relevance in the future. This scoping literature review examines the modern studied mechanisms of etiology and pathogenesis, the influence of skin and gut microflora, as well as comorbidity on the course of psoriasis.
About the Author
A. A. ArsenyevaRussian Federation
Antonina A. Arsenyeva, Cand. Sci. (Med.), Associate Professor, Head of the Department of Dermatovenereology and Cosmetology of the Institute of Professional Education
89, Chapaevskaya St., Samara, 443099
References
1. Nair PA, Badri T. Psoriasis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025. Available at: https://pubmed.ncbi.nlm.nih.gov/28846344.
2. Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM, Ashcroft DM. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020;369:m1590. https://doi.org/10.1136/bmj.m1590.
3. Raharja A, Mahil SK, Barker JN. Psoriasis: a brief overview. Clin Med. 2021;21(3):170–173. https://doi.org/10.7861/clinmed.2021-0257.
4. Kubanov AA, Bogdanova EV. Epidemiology of psoriasis among the elderly population and volume of specialized medical care provided to patients with psoriasis in the Russian Federation in 2010–2019. Vestnik Dermatologii i Venerologii. 2020;96(5):7–18. (In Russ.) https://doi.org/10.25208/vdv1171-2020-96-5-07-18.
5. Vojdani A. A Potential Link between Environmental Triggers and Autoimmunity. Autoimmune Dis. 2014;2014:437231. https://doi.org/10.1155/2014/437231.
6. Liu S, He M, Jiang J, Duan X, Chai B, Zhang J et al. Triggers for the onset and recurrence of psoriasis: a review and update. Cell Commun Signal. 2024;22(1):108. https://doi.org/10.1186/s12964-023-01381-0.
7. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1260–1344. https://doi.org/10.1016/S0140-6736(17)32130-X.
8. Norlin JM, Löfvendahl S, Schmitt-Egenolf M. Health-related quality of life in patients with generalized pustular psoriasis – a Swedish register study. Ann Med. 2024;56(1):2341252. https://doi.org/10.1080/07853890.2024.2341252.
9. Loginova EY, Korotaeva TV, Korsakova YL, Gubar EE, Tremaskina PO, Vasilenko EA et al. The clinical status and working capacity in patients included in the All-Russian Psoriatic Arthritis Registry. Sovremennaya Revmatologiya. 2020;14(3):19–26. (In Russ.) https://doi.org/10/14412/1996-7012-2020-3-19-26.
10. Son IM, Bogdanova EV. Permanent disability in adult patients with moderate and severe psoriasis in the Russian Federation (according to psoriasis patient registry of the Russian society of dermatovenerologists and cosmetologists). Current Problems of Health Care and Medical Statistics. 2024;(1):496–510. (In Russ.) https://doi.org/10.24412/2312-2935-2024-1-496-510.
11. Celoria V, Rosset F, Pala V, Dapavo P, Ribero S, Quaglino P, Mastorino L. The Skin Microbiome and Its Role in Psoriasis: A Review. Psoriasis (Auckl). 2023;13:71–78. https://doi.org/10.2147/PTT.S328439.
12. Spencer SP, Fragiadakis GK, Sonnenburg JL. Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity. 2019;51(2):225–239. https://doi.org/10.1016/j.immuni.2019.08.002.
13. Takeshita J, Grewal S, Langan SM, Mehta NN, Ogdie A, Van Voorhees AS, Gelfand JM. Psoriasis and comorbid diseases: Epidemiology. J Am Acad Dermatol. 2017;76(3):377–390. https://doi.org/10.1016/j.jaad.2016.07.064.
14. Dand N, Mahil SK, Capon F, Smith CH, Simpson MA, Barker JN. Psoriasis and Genetics. Acta Derm Venereol. 2020;100(3):adv00030. https://doi.org/10.2340/00015555-3384.
15. Dascălu RC, Bărbulescu AL, Stoica LE, Dinescu ȘC, Biță CE, Popoviciu HV et al. Review: A Contemporary, Multifaced Insight into Psoriasis Pathogenesis. J Pers Med. 2024;14(5):535. https://doi.org/10.3390/jpm14050535.
16. Conrad C, Gilliet M. Psoriasis: from Pathogenesis to Targeted Therapies. Clin Rev Allergy Immunol. 2018;54(1):102–113. https://doi.org/10.1007/s12016-018-8668-1.
17. Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021;397(10275):754–766. https://doi.org/10.1016/S0140-6736(21)00184-7.
18. Schön MP, Erpenbeck L. The Interleukin-23/Interleukin-17 Axis Links Adaptive and Innate Immunity in Psoriasis. Front Immunol. 2018;9:1323. https://doi.org/10.3389/fimmu.2018.01323.
19. Abhishek S, Palamadai Krishnan S. Epidermal Differentiation Complex: A Review on Its Epigenetic Regulation and Potential Drug Targets. Cell J. 2016;18(1):1–6. https://doi.org/10.22074/cellj.2016.3980.
20. Boehncke WH. Systemic Inflammation and Cardiovascular Comorbidity in Psoriasis Patients: Causes and Consequences. Front Immunol. 2018;9:579. https://doi.org/10.3389/fimmu.2018.00579.
21. Garshick MS, Ward NL, Krueger JG, Berger JS. Cardiovascular Risk in Patients With Psoriasis: JACC Review Topic of the Week. J Am Coll Cardiol. 2021;77(13):1670–1680. https://doi.org/10.1016/j.jacc.2021.02.009.
22. Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM et al. Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture. Am J Hum Genet. 2015;97(6):816–836. https://doi.org/10.1016/j.ajhg.2015.10.019.
23. Nanda H, Ponnusamy N, Odumpatta R, Jeyakanthan J, Mohanapriya A. Exploring genetic targets of psoriasis using genome wide association studies (GWAS) for drug repurposing. 3 Biotech. 2020;10(2):43. https://doi.org/10.1007/s13205-019-2038-4.
24. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41(2):199–204. https://doi.org/10.1038/ng.311.
25. Jordan CT, Cao L, Roberson ED, Pierson KC, Yang CF, Joyce CE et al. PSORS2 is due to mutations in CARD14. Am J Hum Genet. 2012;90(5):784–795. https://doi.org/10.1016/j.ajhg.2012.03.012.
26. Scudiero I, Zotti T, Ferravante A, Vessichelli M, Vito P, Stilo R. Alternative splicing of CARMA2/CARD14 transcripts generates protein variants with differential effect on NF-κB activation and endoplasmic reticulum stressinduced cell death. J Cell Physiol. 2011;226(12):3121–3131. https://doi.org/10.1002/jcp.22667.
27. Fuchs-Telem D, Sarig O, van Steensel MA, Isakov O, Israeli S, Nousbeck J et al. Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am J Hum Genet. 2012;91(1):163–170. https://doi.org/10.1016/j.ajhg.2012.05.010.
28. Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H et al. Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity. 2009;31(4):609–620. https://doi.org/10.1016/j.immuni.2009.09.003.
29. Wong WF, Kohu K, Chiba T, Sato T, Satake M. Interplay of transcription factors in T-cell differentiation and function: the role of Runx. Immunology. 2011;132(2):157–164. https://doi.org/10.1111/j.1365-2567.2010.03381.x.
30. de Cid R, Riveira-Munoz E, Zeeuwen PL, Robarge J, Liao W, Dannhauser EN et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet. 2009;41(2):211–215. https://doi.org/10.1038/ng.313.
31. Riveira-Munoz E, He SM, Escaramís G, Stuart PE, Hüffmeier U, Lee C et al. Meta-analysis confirms the LCE3C_LCE3B deletion as a risk factor for psoriasis in several ethnic groups and finds interaction with HLA-Cw6. J Invest Dermatol. 2011;131(5):1105–1109. https://doi.org/10.1038/jid.2010.350.
32. Queiro R, Morante I, Cabezas I, Acasuso B. HLA-B27 and psoriatic disease: a modern view of an old relationship. Rheumatology. 2016;55(2):221–229. https://doi.org/10.1093/rheumatology/kev296.
33. Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4(8):a015354. https://doi.org/10.1101/cshperspect.a015354.
34. Singh S, Pradhan D, Puri P, Ramesh V, Aggarwal S, Nayek A, Jain AK. Genomic alterations driving psoriasis pathogenesis. Gene. 2019;683:61–71. https://doi.org/10.1016/j.gene.2018.09.042.
35. Temel B, Adisen E, Gonen S. HLA-Cw6 Status and Treatment Responses Between Psoriasis Patients. Indian J Dermatol. 2021;66(6):632–637. https://doi.org/10.4103/ijd.IJD_282_21.
36. Dand N, Stuart PE, Bowes J, Ellinghaus D, Nititham J, Saklatvala JR et al. GWAS meta-analysis of psoriasis identifies new susceptibility alleles impacting disease mechanisms and therapeutic targets. Nat Commun. 2025;16(1):2051. https://doi.org/10.1038/s41467-025-56719-8.
37. Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE. 2008;3(7):e2719. https://doi.org/10.1371/journal.pone.0002719.
38. Fahlén A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304(1):15–22. https://doi.org/10.1007/s00403-011-1189-x.
39. Alekseyenko AV, Perez-Perez GI, De Souza A, Strober B, Gao Z, Bihan M et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1(1):31. https://doi.org/10.1186/2049-2618-1-31.
40. Chang HW, Yan D, Singh R, Liu J, Lu X, Ucmak D et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6(1):154. https://doi.org/10.1186/s40168-018-0533-1.
41. Tett A, Pasolli E, Farina S, Truong DT, Asnicar F, Zolfo M et al. Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiomes. 2017;3:14. https://doi.org/10.1038/s41522-017-0022-5.
42. Fyhrquist N, Muirhead G, Prast-Nielsen S, Jeanmougin M, Olah P, Skoog T et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat Commun. 2019;10(1):4703. https://doi.org/10.1038/s41467-019-12253-y.
43. Quan C, Chen XY, Li X, Xue F, Chen LH, Liu N et al. Psoriatic lesions are characterized by higher bacterial load and imbalance between Cutibacterium and Corynebacterium. J Am Acad Dermatol. 2020;82(4):955–961. https://doi.org/10.1016/j.jaad.2019.06.024.
44. Kamiya K, Kishimoto M, Sugai J, Komine M, Ohtsuki M. Risk Factors for the Development of Psoriasis. Int J Mol Sci. 2019;20(18):4347. https://doi.org/10.3390/ijms20184347.
45. Vijaya Chandra SH, Srinivas R, Dawson TLJr, Common JE. Cutaneous Malassezia: Commensal, Pathogen, or Protector? Front Cell Infect Microbiol. 2021;10:614446. https://doi.org/10.3389/fcimb.2020.614446.
46. Kanda N, Tani K, Enomoto U, Nakai K, Watanabe S. The skin fungus-induced Th1- and Th2-related cytokine, chemokine and prostaglandin E2 production in peripheral blood mononuclear cells from patients with atopic dermatitis and psoriasis vulgaris. Clin Exp Allergy. 2002;32(8):1243–1250. https://doi.org/10.1046/j.1365-2745.2002.01459.x.
47. Gomez-Moyano E, Crespo-Erchiga V, Martínez-Pilar L, Godoy Diaz D, Martínez-García S, Lova Navarro M, Vera Casaño A. Do Malassezia species play a role in exacerbation of scalp psoriasis? J Mycol Med. 2014;24(2):87–92. https://doi.org/10.1016/j.mycmed.2013.10.007.
48. Fabisiak A, Murawska N, Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Rep. 2016;68(4):802–808. https://doi.org/10.1016/j.pharep.2016.03.015.
49. Sikora M, Stec A, Chrabaszcz M, Knot A, Waskiel-Burnat A, Rakowska A et al. Gut Microbiome in Psoriasis: An Updated Review. Pathogens. 2020;9(6):463. https://doi.org/10.3390/pathogens9060463.
50. Visser MJE, Kell DB, Pretorius E. Bacterial Dysbiosis and Translocation in Psoriasis Vulgaris. Front Cell Infect Microbiol. 2019;9:7. https://doi.org/10.3389/fcimb.2019.00007.
51. Chen YJ, Ho HJ, Tseng CH, Lai ZL, Shieh JJ, Wu CY. Intestinal microbiota profiling and predicted metabolic dysregulation in psoriasis patients. Exp Dermatol. 2018;27(12):1336–1343. https://doi.org/10.1111/exd.13786.
52. Codoñer FM, Ramírez-Bosca A, Climent E, Carrión-Gutierrez M, Guerrero M, Pérez-Orquín JM et al. Gut microbial composition in patients with psoriasis. Sci Rep. 2018;8(1):3812. https://doi.org/10.1038/s41598-018-22125-y.
53. Huang L, Gao R, Yu N, Zhu Y, Ding Y, Qin H. Dysbiosis of gut microbiota was closely associated with psoriasis. Sci China Life Sci. 2019;62(6):807–815. https://doi.org/10.1007/s11427-018-9376-6.
54. Shapiro J, Cohen NA, Shalev V, Uzan A, Koren O, Maharshak N. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J Dermatol. 2019;46(7):595–603. https://doi.org/10.1111/1346-8138.14933.
55. Zákostelská Z, Málková J, Klimešová K, Rossmann P, Hornová M, Novosádová I et al. Intestinal Microbiota Promotes Psoriasis-Like Skin Inflammation by Enhancing Th17 Response. PLoS ONE. 2016;11(7):e0159539. https://doi.org/10.1371/journal.pone.0159539.
56. Stehlikova Z, Kostovcikova K, Kverka M, Rossmann P, Dvorak J, Novosadova I et al. Crucial Role of Microbiota in Experimental Psoriasis Revealed by a Gnotobiotic Mouse Model. Front Microbiol. 2019;10:236. https://doi.org/10.3389/fmicb.2019.00236.
57. Gisondi P, Fostini AC, Fossà I, Girolomoni G, Targher G. Psoriasis and the metabolic syndrome. Clin Dermatol. 2018;36(1):21–28. https://doi.org/10.1016/j.clindermatol.2017.09.005.
58. Bellinato F, Maurelli M, Geat D, Girolomoni G, Gisondi P. Managing the Patient with Psoriasis and Metabolic Comorbidities. Am J Clin Dermatol. 2024;25(4):527–540. https://doi.org/10.1007/s40257-024-00857-0.
59. Langan SM, Seminara NM, Shin DB, Troxel AB, Kimmel SE, Mehta NN et al. Prevalence of metabolic syndrome in patients with psoriasis: a population-based study in the United Kingdom. J Invest Dermatol. 2012;132(3):556–562. https://doi.org/10.1038/jid.2011.365.
60. Armstrong AW, Harskamp CT, Armstrong EJ. Psoriasis and metabolic syndrome: a systematic review and meta-analysis of observational studies. J Am Acad Dermatol. 2013;68(4):654–662. https://doi.org/10.1016/j.jaad.2012.08.015.
61. Tablazon IL, Al-Dabagh A, Davis SA, Feldman SR. Risk of cardiovascular disorders in psoriasis patients: current and future. Am J Clin Dermatol. 2013;14(1):1–7. https://doi.org/10.1007/s40257-012-0005-5.
62. Phan C, Sigal ML, Lhafa M, Barthélémy H, Maccari F, Estève E et al. Metabolic comorbidities and hypertension in psoriasis patients in France. Comparisons with French national databases. Ann Dermatol Venereol. 2016;143(4):264–274. https://doi.org/10.1016/j.annder.2015.06.024.
63. Hu MY, Yang Q, Zheng J. The association of psoriasis and hypertension: focusing on anti-inflammatory therapies and immunological mechanisms. Clin Exp Dermatol. 2020;45(7):836–840. https://doi.org/10.1111/ced.14327.
64. Lin Z, Shi YY, Yu LY, Ma CX, Pan SY, Dou Y et al. Metabolic dysfunction associated steatotic liver disease in patients with plaque psoriasis: a casecontrol study and serological comparison. Front Med (Lausanne). 2024;11:1400741. https://doi.org/10.3389/fmed.2024.1400741.
65. Brownstein MH. Psoriasis and diabetes mellitus. Arch Dermatol. 1966;93(6): 654–655. https://doi.org/10.1001/archderm.1966.01600240020003.
66. Binazzi M, Calandra P, Lisi P. Statistical association between psoriasis and diabetes: further results. Arch Dermatol Res. 1975;254(1):43–48. https://doi.org/10.1007/BF00561533.
67. Yuan Z, Guo Y. Risk of incident type 2 diabetes in patients with psoriatic arthritis: A systematic review and meta-analysis of cohort studies. Int J Rheum Dis. 2022;25(9):1029–1037. https://doi.org/10.1111/1756-185X.14375.
68. Wan J, Wang S, Haynes K, Denburg MR, Shin DB, Gelfand JM. Risk of moderate to advanced kidney disease in patients with psoriasis: population based cohort study. BMJ. 2013;347:f5961. https://doi.org/10.1136/bmj.f5961.
69. Ungprasert P, Raksasuk S. Psoriasis and risk of incident chronic kidney disease and end-stage renal disease: a systematic review and meta-analysis. Int Urol Nephrol. 2018;50(7):1277–1283. https://doi.org/10.1007/s11255-018-1868-z.
70. Duan K, Wang J, Chen S, Chen T, Wang J, Wang S, Chen X. Causal associations between both psoriasis and psoriatic arthritis and multiple autoimmune diseases: a bidirectional two-sample Mendelian randomization study. Front Immunol. 2024;15:1422626. https://doi.org/10.3389/fimmu.2024.1422626.
Review
For citations:
Arsenyeva AA. Psoriasis – complex mechanisms of pathogenesis and comorbidity: Do we know everything? Meditsinskiy sovet = Medical Council. 2025;(2):82-90. (In Russ.) https://doi.org/10.21518/ms2025-076