Comparative study of the microbiological activity of pazufloxacin, levofloxacin and moxifloxacin
https://doi.org/10.21518/ms2025-199
Abstract
Introduction. Increasing antibiotic resistance is an important global problem. One of the most common classes of antibacterial drugs used in therapeutic practice are fluoroquinolones. Such drugs as levofloxacin, moxifloxacin, and pazufloxacin are the most promising for the treatment of a wide range of infections. Pazufloxacin has a good clinical effect in the treatment of infections resistant to other antibiotics. With respect to levofloxacin and moxifloxacin, there are criteria for determining sensitivity and significant experience in clinical and microbiological studies indicating their effectiveness, but with respect to pazufloxacin, there are few such studies and currently there are no criteria for interpreting the diameters of growth retardation zones and/or indicators of the values of the minimum suppressive concentration (MSC).
Aim. To evaluate the distribution of the values of the minimum suppressive concentrations of drugs of the fluoroquinolone group: pazufloxacin, levofloxacin, moxifloxacin in relation to 200 clinical isolates of microorganisms.
Materials and methods. We selected 200 bacterial strains isolated from patients from various regions of the Russian Federation. Among them are 20 strains of Pseudomonas aeruginosa, excluding MBL producers, 20 – Klebsiella pneumoniae, excluding MBL producers, 20 – Streptococcus pneumoniae, 20 – Enterococcus faecalis, 20 – Enterococcus faecium, 20 – Escherichia coli, excluding MBL producers, 20 – Proteus spp., excluding MBL producers, 20 – Staphylococcus aureus, including MRSA, 20 – Haemophilus influenzae, 20 – Moraxella catarrhalis.
Results and discussion. According to the data obtained, it was found that some of the studied strains have a high level of sensitivity to the drugs levofloxacin and moxifloxacin, and some, on the contrary, retain a high level of resistance. The criteria for evaluating the MSC of pazufloxacin in relation to the studied isolates have not been determined, but it is worth noting that most cultures have demonstrated an achievable value of MSC indicators. This suggests a high level of efficacy of the drug in clinical use.
Conclusions. According to the results of the study, sensitivity to low values of pazufloxacin was revealed in relation to a number of cultures, in the absence of sensitivity to other drugs of the fluoroquinolone group, this also indicates the absence of crossresistance with drugs of this group.
About the Authors
O. V. KondratenkoRussian Federation
Olga V. Kondratenko, Dr. Sci. (Med.), Professor, Head of Laboratory Educational Technologies in Genetics, Microbiology and Laboratory Diagnostics
89, Chapaevskaya St., Samara, 443099
R. R. Galieva
Russian Federation
Regina R. Galieva, Specialist of the Laboratory of Educational Technologies in Genetics, Microbiology and Laboratory Diagnostics
89, Chapaevskaya St., Samara, 443099
References
1. Naghavi M. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. GBD 2021 Antimicrobial Resistance Collaborators. Lancet. 2024;404(10459):1199–1226. https://doi.org/10.1016/S0140-6736(24)01867-1.
2. Kozlov RS, Golub AV. Respiratory fluoroquinolones in outpatient clinical practice. Meditsinskiy Sovet. 2015;(11):114–119. (In Russ.) Available at: https://www.med-sovet.pro/jour/article/view/301.
3. Yakovlev SV. The place of fluoroquinolones in the treatment of bacterial infections. RMJ. 2003;11(8):434. (In Russ.) Available at: https://www.rmj.ru/articles/klinicheskaya_farmakologiya/Mesto_ftorhinolonov_v_lechenii_bakterialynyh_infekciy.
4. Antibiotics of the fluoroquinolone group. Historical background. The District Therapist. 2016;(6):11. (In Russ.) Available at: https://omnidoctor.ru/upload/iblock/cb0/cb0724b0f6affc499ffd0097f6a84e79.pdf.
5. Ushkalova EA, Zyryanov UK. Fluoroquinolones efficacy in acute sinusitis, acute exacerbation of chronic bronchitis and uncomplicated urinary tract infections. Klinicheskaia Mikrobiologiia i Antimikrobnaia Khimioterapiia. 2017;19(1):25–30. (In Russ.) Available at: https://cmac-journal.ru/publication/2017/1/cmac-2017-t19-n1-p025/cmac-2017-t19-n1-p025.pdf.
6. Lazareva NB, Rebrova EV, Ryazanova AY, Savintseva DD. Fluoroquinolones: Issues of Efficacy and Safety in Pulmonary Practice. Prakticheskaya Pulʹmonologiya. 2019;(2):58–68. (In Russ.) Available at: https://atmosphere-ph.ru/modules.php?name=Magazines&sop=viewarticle&magid=1&issueid=466&artid=5766.
7. Novikov VE. Pharmacology of quinolones and fluoroquinolones. Reviews on Clinical Pharmacology and Drug Therapy. 2008;6(3):57–61. (In Russ.) Available at: https://cyberleninka.ru/article/n/farmakologiya-hinolonovi-ftorhinolonov.
8. Vardakas KZ, Siempos II, Grammatikos A. Respiratory fluoroquinolones for the treatment of community-acquired pneumonia: a meta-analysis of randomized controlled trials. CMAJ. 2009;179(12):1269–1277. https://doi.org/10.1503/cmaj.080358.
9. Sidorenko SV. Fluoroquinolones: properties and clinical application. Trudnyj Pacient. 2011;(5):21–26. (In Russ.) Available at: https://web.archive.org/web/20130522045812/http://www.t-pacient.ru/archive/tp5-11/tp5-11_764.html.
10. Yakovlev VP. Antibacterial drugs of the fluoroquinolone group. Consilium Medicum. 2012;14(4):8–14. (In Russ.) Available at: https://omnidoctor.ru/upload/iblock/785/7854fcfc8887ca6c0b1c9d7cf92da458.pdf.
11. Zaitsev AA, Sinopalnikov AI. “Respiratory” fluoroquinolones in the treatment of respiratory tract infections. RMJ. 2010;(30):1883. (In Russ.) Available at: https://www.rmj.ru/articles/bolezni_dykhatelnykh_putey/Respiratornye_ftorhinolony_v_terapii_infekciy_dyhatelynyh_putey.
12. Gomon YM, Kolbin AS, Arepyeva MA, Kalyapin AA, Balykina YE, Kurylev AA. Antimicrobial drug consumption in the Russian Federation (2008–2022): pharmacoepidemiological study. Klinicheskaia Mikrobiologiia i Antimikrobnaia Khimioterapiia. 2023;25(4):395–400. (In Russ.) https://doi.org/10.36488/cmac.2023.4.395-400.
13. Adriaenssens N, Bruyndonckx R, Versporten A. Consumption of quinolones in the community, European Union/European Economic Area, 1997–2017. J Antimicrob Chemother. 2021;76(2):37–44. https://doi.org/10.1093/jac/dkab176.
14. Zakharenkov IA, Rachina SA, Kozlov RS, Belkova YA. Consumption of systemic antibiotics in the Russian Federation in 2017–2021. Klinicheskaia Mikrobiologiia i Antimikrobnaia Khimioterapiia. 2022;24(3):220–225. (In Russ.) https://doi.org/10.36488/cmac.2022.3.220-225.
15. Golub AV, Pleshkov VG, Privolnev VV. Fluoroquinolones in ambulatory surgical practice: whom, when, how? Ambulatornaya Khirurgiya. 2016;(1-2):19–24. (In Russ.) Available at: https://www.a-surgeon.ru/jour/article/view/33/34.
16. Sinopalnikov AI. Moxifloxacin in the treatment of community-acquired pneumonia in adults: what’s new? Meditsinskiy Sovet. 2014;(16):36–43. (In Russ.) Available at: https://www.med-sovet.pro/jour/article/view/760.
17. Skleenova EY, Azyzov IS, Shek EA, Edelstein MV, Kozlov RS, Dekhnich AV. Pseudomonas aeruginosa: the history of one of the most successful nosocomial pathogens in Russian hospitals. Klinicheskaia Mikrobiologiia i Antimikrobnaia Khimioterapiia. 2018;20(3):164–171. (In Russ.) https://doi.org/10.36488/cmac.2018.3.164-171.
18. Beloborodov VB, Goloschapov OV, Gusarov VG, Dekhnich АV, Zamyatin MN, Zubareva NA. Guidelines of the Association of AnesthesiologistsIntensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), and NGO Russian Sepsis Forum “Diagnostics and antimicrobial therapy of the infections caused by multiresistant microorganisms” (update 2022). Messenger of Anesthesiology and Resuscitation. 2022;19(2):84–114. (In Russ.) https://doi.org/10.21292/2078-5658-2022-19-2-84-114.
19. Mareș C, Petca RC, Popescu RI, Petca A, Mulțescu R, Bulai CA. Update on Urinary Tract Infection Antibiotic Resistance-A Retrospective Study in Females in Conjunction with Clinical Data. Life. 2024;14(1):106. https://doi.org/10.3390/life14010106.
20. Shi Z, Zhang J, Tian L. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules. 2023;28(4):1762. https://doi.org/10.3390/molecules28041762.
21. Minami S, Hattori R, Matsuda A. Pharmacological properties and expected clinical role of an injectable new quinolone antibiotic, pazufloxacin mesilate. Nihon Yakurigaku Zasshi. 2003;122(2):161–178. https://doi.org/10.1254/fpj.122.161.
22. Fukuda H, Kawamura Y. Drug interactions between nonsteroidal antiinflammatory drug and pazufloxacin mesilate, a new quinolone antibacterial agent for intravenous use: convulsions in mice after intravenous or intracerebroventricular administration. Jpn J Antibiot. 2002;55(3):270–280. Available at: https://pubmed.ncbi.nlm.nih.gov/12199111.
23. Kodama Y, Hori S, Tominaga S, Ohwada A, Yoshimi K, Sekiya M et al. [Evaluation of clinical effectiveness of Pazufloxacin Mesilate in acute exacerbation of chronic respiratory diseases]. Nihon Kokyuki Gakkai Zasshi. 2008;46(10): 781–787. Available at: https://pubmed.ncbi.nlm.nih.gov/19044026.
24. Kumazawa J, Matsumoto T, Tsukamoto T, Hirose T, Ohishi Y, Kawabe K et al. A comparative study of pazufloxacin mesilate (T-3762) and ceftazidime (CAZ) in the treatment of complicated urinary tract infections. Nis J Urol. 2000;62(8):472–500. Available at: https://www.researchgate.net/publication/290544221_A_comparative_study_of_pazufloxacin_mesilate_T-3762_and_ceftazidime_CAZ_in_the_treatment_of_complicated_urinary_tract_infections.
25. Rawla P, El Helou ML, Vellipuram AR. Fluoroquinolones and the Risk of Aortic Aneurysm or Aortic Dissection: A Systematic Review and MetaAnalysis. Cardiovasc Hematol Agents Med Chem. 2019;17(1):3–10. https://doi.org/10.2174/1871525717666190402121958.
26. Gorelik E, Masarwa R, Perlman A. Fluoroquinolones and Cardiovascular Risk: A Systematic Review, Meta-analysis and Network Meta-analysis. Drug Saf. 2019;42(4):529–538. https://doi.org/10.1007/s40264-018-0751-2.
Review
For citations:
Kondratenko OV, Galieva RR. Comparative study of the microbiological activity of pazufloxacin, levofloxacin and moxifloxacin. Meditsinskiy sovet = Medical Council. 2025;(9):157-166. (In Russ.) https://doi.org/10.21518/ms2025-199