Preview

Meditsinskiy sovet = Medical Council

Advanced search

Exosomes in aesthetic medicine and dermatology: A review and clinical experience

https://doi.org/10.21518/ms2025-347

Abstract

Exosomes are microscopic particles secreted by various plant and animal cells, including human cells. They carry valuable biologically active substances such as proteins, lipids, nucleic acids, and metabolites that exert beneficial effects on various structures and tissues. In aesthetic medicine and dermatology, exosomes have attracted attention due to their ability to enhance collagen synthesis, eliminate inflammation, and improve the skin’s protection against harmful external factors. To date, considerable clinical experience has been gained in the use of exosome products for the treatment of skin diseases such as rosacea, acne, pigmentation disorders, and alopecia, as well as for aesthetic correction and skin rejuvenation. When using exosomes, it is important to have an understanding of the origin of a particular product, including the manufacturer, the production and analysis standards used, due to the lack of international standardization in this area. For the most effective implementation of exosome-based treatments, adherence to official directions for use is critical. With no unified application protocols available, the evaluation of specialists’ practical experience in this area is particularly valuable. This article presents a general overview of exosomes, discusses their production and analysis on an industrial scale, and describes the current state of their application in clinical practice. In addition, the experience of exosomal therapy in dermatology and aesthetic medicine is presented.

About the Authors

E. A. Razumovskaya
Renaissance Cosmetology Clinic
Russian Federation

Elena A. Razumovskaya - Cosmetologist, Plastic Surgeon, Medical Director.

106n, Novo-Sadovaya St., Samara, 443068



S. V. Murakov
Academy of Postgraduate Education of the Federal Clinical Research Centre for Specialized Medical Care and Medical Technologies; Lotos 288 LLC
Russian Federation

Stanislav V. Murakov - Dr. Sci. (Med.), Professor of the Department of Dermatovenereology and Cosmetology, Academy of Postgraduate Education of the FCRC for Specialized Medical Care and Medical Technologies; Medical Director, Head of the Cosmetology Center, Cosmetologist, Lotos 288 LLC.

9, Volokolamskoye Shosse, Moscow, 125371; 111, Bldg. 1, Room 3p, Leninsky Ave., Moscow, 119421



O. M. Kapuler
Center for Esthetic Medicine, Plastic and Reconstructive Surgery
Russian Federation

Olga M. Kapuler - Dr. Sci. (Med.), Professor, Board Certified Doctor, Chief Consultant for Esthetic Medicine in the Ufa Health Department, External Medical Officer for Esthetic Medicine in the Bashkortostan Department of the Federal Service for Surveillance in Healthcare, Distinguished Physician of the Russian Federation; Dermatovenerologist, Cosmetologist, Center for Esthetic Medicine, Plastic and Reconstructive Surgery.

37, Komsomolskaya St., Ufa, Republic of Bashkortostan, 450037



N. G. Kalashnikova
Linline Clinic Chain
Russian Federation

Natalia G. Kalashnikova - Surgeon, Сosmetologist, Director of Scientific Research.

4, Universitetsky Ave., Moscow, 119333



A. M. Glavnova
Lotos 288 LLC
Russian Federation

Anastasia M. Glavnova - Dermatologist, Venereologist, Cosmetologist, Medical Advisor.

111, Bldg. 1, Room 3p, Leninsky Ave., Moscow, 119421



E. N. Knyzkova
Lotos 288 LLC
Russian Federation

Elena N. Knyzkova – Cosmetologist.

111, Bldg. 1, Room 3p, Leninsky Ave., Moscow, 119421



A. V. Timofeev
Lotos 288 LLC
Russian Federation

Aleksey V. Timofeev - Cosmetologist, Plastic Surgeon.

111, Bldg. 1, Room 3p, Leninsky Ave., Moscow, 119421



References

1. Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–197. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0021-9258(17)34997-9.

2. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269–288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x.

3. Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969;41(1):59–72. https://doi.org/10.1083/jcb.41.1.59.

4. Dalton AJ. Microvesicles and vesicles of multivesicular bodies versus “virus-like” particles. J Natl Cancer Inst. 1975;54(5):1137–1148. https://doi.org/10.1093/jnci/54.5.1137.

5. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–978. https://doi.org/10.1016/0092-8674(83)90040-5.

6. Shurtleff MJ, Temoche-Diaz MM, Schekman R. Extracellular vesicles and cancer: caveat lector. Annu Rev Cancer Biol. 2018;2:395–411. https://doi.org/10.1146/annurev-cancerbio-030617-050519.

7. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ et al. Reassessment of Exosome Composition. Cell. 2019;177(2):428–445.e18. https://doi.org/10.1016/j.cell.2019.02.029.

8. Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. https://doi.org/10.1002/jev2.12404.

9. Sheta M, Taha EA, Lu Y, Eguchi T. Extracellular Vesicles: New Classification and Tumor Immunosuppression. Biology. 2023;12(1):110. https://doi.org/10.3390/biology12010110.

10. Ahn SH, Ryu SW, Choi H, You S, Park J, Choi C. Manufacturing Therapeutic Exosomes: from Bench to Industry. Mol Cells. 2022;45(5):284–290. https://doi.org/10.14348/molcells.2022.2033.

11. Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019;8(7):727. https://doi.org/10.3390/cells8070727.

12. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78(9):838–848. https://doi.org/10.1038/ki.2010.278.

13. Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev. 2019;43(3):273–303. https://doi.org/10.1093/femsre/fuy042.

14. Li LM, Liu H, Liu XH, Hu HB, Liu SM. Clinical significance of exosomal miRNAs and proteins in three human cancers with high mortality in China. Oncol Lett. 2019;17(1):11–22. https://doi.org/10.3892/ol.2018.9631.

15. Yoon SB, Chang JH. Extracellular vesicles in bile: a game changer in the diagnosis of indeterminate biliary stenoses? Hepatobiliary Surg Nutr. 2017;6(6):408–410. https://doi.org/10.21037/hbsn.2017.10.01.

16. Lee YJ, Shin, KJ, Chae YC. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp Mol Med. 2024;56(4):877–889. https://doi.org/10.1038/s12276-024-01209-y.

17. Di Mattia T, Tomasetto C, Alpy F. Faraway, so close! Functions of Endoplasmic reticulum-Endosome contacts. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(1):158490. https://doi.org/10.1016/j.bbalip.2019.06.016.

18. Kwon SH, Oh S, Nacke M, Mostov KE, Lipschutz JH. Adaptor Protein CD2AP and L-type Lectin LMAN2 Regulate Exosome Cargo Protein Trafficking through the Golgi Complex. J Biol Chem. 2016;291(49):25462–25475. https://doi.org/10.1074/jbc.M116.729202.

19. Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021;22(11):733–750. https://doi.org/10.1038/s41580-021-00392-4.

20. van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23(5):369–382. https://doi.org/10.1038/s41580-022-00460-3.

21. Krylova SV, Feng D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci. 2023;24(2):1337. https://doi.org/10.3390/ijms24021337.

22. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19. https://doi.org/10.1186/s13578-019-0282-2.

23. Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019;60(1):9–18. https://doi.org/10.1194/jlr.R084343.

24. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14:319. https://doi.org/10.1186/1471-2164-14-319.

25. Janouskova O, Herma R, Semeradtova A, Poustka D, Liegertova M, Hana Auer M, Maly J. Conventional and Nonconventional Sources of Exosomes – Isolation Methods and Influence on Their Downstream Biomedical Application. Front Mol Biosci. 2022;9:846650. https://doi.org/10.3389/fmolb.2022.846650.

26. Elahi FM, Farwell DG, Nolta JA, Anderson JD. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells. 2020;38(1):15–21. https://doi.org/10.1002/stem.3061.

27. O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21(10):585–606. https://doi.org/10.1038/s41580020-0251-y.

28. Cunnane EM, Weinbaum JS, O’Brien FJ, Vorp DA. Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration. Front Cardiovasc Med. 2018;5:86. https://doi.org/10.3389/fcvm.2018.00086.

29. Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B. Extracellular Vesicles in Physiology, Pathology, and Therapy of the Immune and Central Nervous System, with Focus on Extracellular Vesicles Derived from Mesenchymal Stem Cells as Therapeutic Tools. Front Cell Neurosci. 2016;10:109. https://doi.org/10.3389/fncel.2016.00109.

30. Han C, Sun X, Liu L, Jiang H, Shen Y, Xu X et al. Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells Int. 2016;2016:7653489. https://doi.org/10.1155/2016/7653489.

31. Zhao X, Zhang W, Fan J, Chen X, Wang X. Application of mesenchymal stem cell exosomes in the treatment of skin wounds. Smart Mater Med. 2023;4:578–589. https://doi.org/10.1016/j.smaim.2023.04.006.

32. Chang CL, Sung PH, Chen KH, Shao PL, Yang CC, Cheng BC et al. Adiposederived mesenchymal stem cell-derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome. Am J Transl Res. 2018;10(4):1053–1070. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC5934566/.

33. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17(4):761–773. https://doi.org/10.1089/scd.2007.0217.

34. Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14. https://doi.org/10.3727/096368910X.

35. Wang Y, Li Q, Zhou S, Tan P. Contents of exosomes derived from adipose tissue and their regulation on inflammation, tumors, and diabetes. Front Endocrinol. 2024;15:1374715. https://doi.org/10.3389/fendo.2024.1374715.

36. Li C, Wei S, Xu Q, Sun Y, Ning X, Wang Z. Application of ADSCs and their Exosomes in Scar Prevention. Stem Cell Rev Rep. 2022;18(3):952–967. https://doi.org/10.1007/s12015-021-10252-5.

37. Qin X, He J, Wang X, Wang J, Yang R, Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol. 2023;14:1256687. https://doi.org/10.3389/fimmu.2023.1256687.

38. Zhou Y, Zhang XL, Lu ST, Zhang NY, Zhang HJ, Zhang J, Zhang J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res Ther. 2022;13(1):407. https://doi.org/10.1186/s13287022-02980-3.

39. Cho BS, Lee J, Won Y, Duncan DI, Jin RC, Lee J et al. Skin Brightening Efficacy of Exosomes Derived from Human Adipose Tissue-Derived Stem/ Stromal Cells: A Prospective, Split-Face, Randomized Placebo-Controlled Study. Cosmetics. 2020;7(4):90. https://doi.org/10.3390/cosmetics7040090.

40. Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J Pharm Sci. 2022;17(1):53–69. https://doi.org/10.1016/j.ajps.2021.05.006.

41. Cong M, Tan S, Li S, Gao L, Huang L, Zhang HG, Qiao H. Technology insight: Plant-derived vesicles – How far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev. 2022;182:114108. https://doi.org/10.1016/j.addr.2021.114108.

42. Mu N, Li J, Zeng L, You J, Li R, Qin A et al. Plant-Derived Exosome-Like Nanovesicles: Current Progress and Prospects. Int J Nanomedicine. 2023;18:4987–5009. https://doi.org/10.2147/IJN.S420748.

43. Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther. 2020;29(1):13–31. https://doi.org/10.1016/j.ymthe.2020.11.030.

44. Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22(3):522–534. https://doi.org/10.1038/mt.2013.190.

45. Rutter BD, Innes RW. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. Plant Physiol. 2017;173(1):728–741. https://doi.org/10.1104/pp.16.01253.

46. Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitisassociated cancer. Biomaterials. 2016;101:321–340. https://doi.org/10.1016/j.biomaterials.2016.06.018.

47. Al-Suhaimi EA, Al-Riziza NA, Al-Essa RA. Physiological and therapeutical roles of ginger and turmeric on endocrine functions. Am J Chin Med. 2011;39(2):215–231. https://doi.org/10.1142/S0192415X11008762.

48. Choi J, Lee DH, Jang H, Park SY, Seol JW. Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma. Int J Med Sci. 2020;17(18):3049–3057. https://doi.org/10.7150/ijms.44804.

49. Zeng L, Wang H, Shi W, Chen L, Chen T, Chen G et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J Nanobiotechnology. 2021;19(1):439. https://doi.org/10.1186/s12951-021-01195-7.

50. Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y et al. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J Nutr Biochem. 2015;26(5):505–512. https://doi.org/10.1016/j.jnutbio.2014.12.002.

51. Won YJ, Lee E, Min SY, Cho BS. Biological function of exosome-like particles isolated from Rose (Rosa Damascena) stem cell culture supernatant. bioRxiv. 2023;2023.10.17.562840. https://doi.org/10.1101/2023.10.17.562840.

52. Lueangarun S, Cho BS, Tempark T. Rose stem cell-derived exosomes for hair regeneration enhancement via noninvasive electroporation in androgenetic alopecia. J Cosmet Dermatol. 2024;23(11):3791–3794. https://doi.org/10.1111/jocd.16463.

53. Park HS, Shin S. Clinical Efficacy and Safety Evaluation of a Centella asiatica (CICA)-Derived Extracellular Vesicle Formulation for Anti-Aging Skincare. Cosmetics. 2025;12(4):135. https://doi.org/10.3390/cosmetics12040135.

54. Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The Antioxidant Effect of Small Extracellular Vesicles Derived from Aloe vera Peels for Wound Healing. Tissue Eng Regen Med. 2021;18(4):561–571. https://doi.org/10.1007/s13770-021-00367-8.

55. Nemati M, Singh B, Mir RA, Nemati M, Babaei A, Ahmadi M et al. Plantderived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun Signal. 2022;20(1):69. https://doi.org/10.1186/s12964-022-00889-1.

56. Cho JH, Hong YD, Kim D, Park SJ, Kim JS, Kim HM et al. Confirmation of plant-derived exosomes as bioactive substances for skin application through comparative analysis of keratinocyte transcriptome. Appl Biol Chem. 2022;65:8. https://doi.org/10.1186/s13765-022-00676-z.

57. Wang CK, Tsai TH, Lee CH. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. Clin Transl Sci. 2024;17(8):e13904. https://doi.org/10.1111/cts.13904.

58. Chen Y, Qi W, Wang Z, Niu F. Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins. Pharmaceutics. 2025;17(2):147. https://doi.org/10.3390/pharmaceutics17020147.

59. Tiwari S, Kumar V, Randhawa S, Verma SK. Preparation and characterization of extracellular vesicles. Am J Reprod Immunol. 2021;85(2):e13367. https://doi.org/10.1111/aji.13367.

60. Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH et al. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells. 2020;9(5):1157. https://doi.org/10.3390/cells9051157.

61. Ramírez O, Pomareda F, Olivares B, Huang YL, Zavala G, Carrasco-Rojas J et al. Aloe vera peel-derived nanovesicles display anti-inflammatory properties and prevent myofibroblast differentiation. Phytomedicine. 2024;122:155108. https://doi.org/10.1016/j.phymed.2023.155108.

62. Kim DM, Kim WJ, Lee HK, Kwon YS, Choi YM. Skin Improvement of the Composition Containing Nano-exosome Derived from Aloe vera Bark Callus as New Type of Transdermal Delivery System. Asian J Beauty Cosmetol. 2023;21(1):117–130. https://doi.org/10.20402/ajbc.2023.0004.

63. Fontbonne A, Teme B, Abric E, Lecerf G, Callejon S, Moga A et al. Positive and ecobiological contribution in skin photoprotection of ectoine and mannitol combined in vivo with UV filters. J Cosmet Dermatol. 2024;23(1):308–315. https://doi.org/10.1111/jocd.15893.

64. Chmielewski R, Lesiak A. Mitigating Glycation and Oxidative Stress in Aesthetic Medicine: Hyaluronic Acid and Trehalose Synergy for AntiAGEs Action in Skin Aging Treatment. Clin Cosmet Investig Dermatol. 2024;17:2701–2712. https://doi.org/10.2147/CCID.S476362.

65. Yellon DM, Davidson SM. Exosomes: nanoparticles involved in cardioprotection? Circ Res. 2014;114(2):325–332. https://doi.org/10.1161/CIRCRESAHA.113.300636.

66. Zhou Y, Zhao B, Zhang XL, Lu YJ, Lu ST, Cheng J et al. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther. 2021;12(1):257. https://doi.org/10.1186/s13287-021-02287-9.

67. Olumesi KR, Goldberg DJ. A review of exosomes and their application in cutaneous medical aesthetics. J Cosmet Dermatol. 2023;22(10):2628–2634. https://doi.org/10.1111/jocd.15930.

68. Manzoor T, Farooq N, Sharma A, Shiekh PA, Hassan A, Dar LA et al. Exosomes in nanomedicine: a promising cell-free therapeutic intervention in burn wounds. Stem Cell Res Ther. 2024;15(1):355. https://doi.org/10.1186/s13287-024-03970-3.

69. Kim JH, Kim JE, Kang SJ, Yoon JK. Exosomes and Exosome-Mimetics for Atopic Dermatitis Therapy. Tissue Eng Regen Med. 2025;22(4):381–396. https://doi.org/10.1007/s13770-024-00695-5.

70. Zhou J, Yin M, Liu X, Mai Y, Wu S, He J et al. Clinical observation on the therapeutic efficacy of mesenchymal stem cell-derived exosomes for rosacea. Pifu-xingbing zhenliaoxue zazhi. 2023;30(6):489–494. (In Chinese) https://doi.org/10.3969/j.issn.1674-8468.2023.06.002.

71. Chen Y, Liu H, He Y, Yang B, Lu W, Dai Z. Roles for Exosomes in the Pathogenesis, Drug Delivery and Therapy of Psoriasis. Pharmaceutics. 2025;17(1):51. https://doi.org/10.3390/pharmaceutics17010051.

72. Bento EB, Matos C, Ribeiro Junior HL. Successful Treatment of Hair Loss and Restoration of Natural Hair Color in Patient with Alopecia Areata Due to Psychological Disorder Using Exosomes: Case Report with 6-Month Follow-Up. Cosmetics. 2025;12(3):97. https://doi.org/10.3390/cosmetics12030097.

73. Schaffer S, Tehrani L, Koechle B, Chandramohan P, Hilburn B, Aoki KC, Jacobs RJ. A Scoping Review of Exosome Delivery Applications in Hair Loss. Cureus. 2025;17(3):e81152. https://doi.org/10.7759/cureus.81152.

74. Ersan M, Ozer E, Akin O, Tasli PN, Sahin F. Effectiveness of Exosome Treatment in Androgenetic Alopecia: Outcomes of a Prospective Study. Aesthetic Plast Surg. 2024;48(21):4262–4271. https://doi.org/10.1007/ s00266-024-04332-3.

75. Zhong Y, Zhang Y, Yu A, Zhang Z, Deng Z, Xiong K et al. Therapeutic role of exosomes and conditioned medium in keloid and hypertrophic scar and possible mechanisms. Front Physiol. 2023;14:1247734. https://doi.org/10.3389/fphys.2023.1247734.

76. Pastrana-Lopez S. Mesenchymal Stem Cell-Derived Exosome Treatment for Acne Scars: An Alternative Therapy. J Stem Cell Res. 2024;5(2):1–15. https://doi.org/10.52793/JSCR.2024.5(2)-S2(2).

77. Hajialiasgary Najafabadi A, Soheilifar MH, Masoudi-Khoram N. Exosomes in skin photoaging: biological functions and therapeutic opportunity. Cell Commun Signal. 2024;22(1):32. https://doi.org/10.1186/s12964-023-01451-3.

78. Thakur A, Shah D, Rai D, Parra DC, Pathikonda S, Kurilova S, Cili A. Therapeutic Values of Exosomes in Cosmetics, Skin Care, Tissue Regeneration, and Dermatological Diseases. Cosmetics. 2023;10(2):65. https://doi.org/10.3390/cosmetics10020065.

79. Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 2014;289(32):22258–22267. https://doi.org/10.1074/jbc.M114.588046.

80. Wang Y, Wei Y, Liao H, Fu H, Yang X, Xiang Q, Zhang S. Plant Exosome-like Nanoparticles as Biological Shuttles for Transdermal Drug Delivery. Bioengineering. 2023;10(1):104. https://doi.org/10.3390/bioengineering10010104.

81. Zhang B, Lai RC, Sim WK, Choo ABH, Lane EB, Lim SK. Topical Application of Mesenchymal Stem Cell Exosomes Alleviates the Imiquimod Induced Psoriasis-Like Inflammation. Int J Mol Sci. 2021;22(2):720. https://doi.org/10.3390/ijms22020720.

82. Bai G, Truong TM, Pathak GN, Benoit L, Rao B. Clinical applications of exosomes in cosmetic dermatology. Skin Health Dis. 2024;4(6):e348. https://doi.org/10.1002/ski2.348.

83. von Bahr L, Batsis I, Moll G, Hägg M, Szakos A, Sundberg B et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells. 2012;30(7):1575–1578. https://doi.org/10.1002/stem.1118.

84. MacIsaac ZM, Shang H, Agrawal H, Yang N, Parker A, Katz AJ. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells. Exp Cell Res. 2012;318(4):416–423. https://doi.org/10.1016/j.yexcr.2011.12.002.

85. Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z et al. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis. 2013;4(12):e950. https://doi.org/10.1038/cddis.2013.480.

86. Tan TT, Lai RC, Padmanabhan J, Sim WK, Choo ABH, Lim SK. Assessment of Tumorigenic Potential in Mesenchymal-Stem/Stromal-Cell-Derived Small Extracellular Vesicles (MSC-sEV). Pharmaceuticals. 2021;14(4):345. https://doi.org/10.3390/ph14040345.

87. Han Z, Peng C, Yi J, Zhang D, Xiang X, Peng X et al. Highly efficient exosome purification from human plasma by tangential flow filtration based microfluidic chip. Sens. Actuator B-Chem. 2021;333:129563. https://doi.org/10.1016/j.snb.2021.129563.

88. El-Qushayri AE, Ghozy S, Morsy S, Ali F, Islam SMS. Blood Transfusion and the Risk of Cancer in the US Population: Is There an Association? Clin Epidemiol. 2020;12:1121–1127. https://doi.org/10.2147/CLEP.S271275.

89. Arsanious S, Branman RL, Brock WD. A Severe Case of Diffuse Telogen Effluvium Status Post Endoscopic Repair of Functional Brow Ptosis. Am J Cosmetic Surg. 2017;34(4):175–178. https://doi.org/10.1177/0748806817720580.

90. Lawrence E, Syed HA, Al Aboud KM. Postinflammatory Hyperpigmentation. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025. Available at: https://www.ncbi.nlm.nih.gov/books/NBK559150/.

91. Nikonorova VG, Krishtop VV, Rumyantseva TA. Growth factors in the restoration and formation of skin scars. Crimea Journal of Experimental and Clinical Medicine. 2022;12(1):102–112. (In Russ.) Available at: https://www.elibrary.ru/yxaozg.

92. Zhang Q, Liu LN, Yong Q, Deng JC, Cao WG. Intralesional injection of adiposederived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res Ther. 2015;6(1):145. https://doi.org/10.1186/s13287-015-0133-y.

93. Cai Y, Li J, Jia C, He Y, Deng C. Therapeutic applications of adipose cell-free derivatives: a review. Stem Cell Res Ther. 2020;11(1):312. https://doi.org/10.1186/s13287-020-01831-3.

94. Li Y, Zhang J, Shi J, Liu K, Wang X, Jia Y et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res Ther. 2021;12(1):221. https://doi.org/10.1186/s13287-021-02290-0.

95. Norouzi F, Aghajani S, Vosoughi N, Sharif S, Ghahremanzadeh K, Mokhtari Z, Verdi J. Exosomes derived stem cells as a modern therapeutic approach for skin rejuvenation and hair regrowth. Regen Ther. 2024;26:1124–1137. https://doi.org/10.1016/j.reth.2024.10.001.

96. Domaszewska-Szostek A, Krzyżanowska M, Polak A, Puzianowska-Kuźnicka M. Effectiveness of Extracellular Vesicle Application in Skin Aging Treatment and Regeneration: Do We Have Enough Evidence from Clinical Trials? Int J Mol Sci. 2025;26(5):2354. https://doi.org/10.3390/ijms26052354.

97. Tan J. Updating the diagnosis, classification and assessment of rosacea by effacement of subtypes: reply from the author. Br J Dermatol. 2017;177(2):598–599. https://doi.org/10.1111/bjd.15669.

98. Feng H, Gong S, Liu J, Aghayants S, Liu Y, Wu M et al. Adipose-derived stem cell exosomes: mechanisms and therapeutic potentials in wound healing. Biomark Res. 2025;13(1):88. https://doi.org/10.1186/s40364-025-00801-2.

99. Ye C, Zhang Y, Su Z, Wu S, Li Y, Yi J et al. hMSC exosomes as a novel treatment for female sensitive skin: An in vivo study. Front Bioeng Biotechnol. 2022;10:1053679. https://doi.org/10.3389/fbioe.2022.1053679.

100. Papadopoulos KS, Piperi C, Korkolopoulou P. Clinical Applications of Adipose-Derived Stem Cell (ADSC) Exosomes in Tissue Regeneration. Int J Mol Sci. 2024;25(11):5916. https://doi.org/10.3390/ijms25115916.


Review

For citations:


Razumovskaya EA, Murakov SV, Kapuler OM, Kalashnikova NG, Glavnova AM, Knyzkova EN, Timofeev AV. Exosomes in aesthetic medicine and dermatology: A review and clinical experience. Meditsinskiy sovet = Medical Council. 2025;(14):168-182. (In Russ.) https://doi.org/10.21518/ms2025-347

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)