Preview

Meditsinskiy sovet = Medical Council

Advanced search

Hyperglycemia in the focus of prevention of age-related skin changes

https://doi.org/10.21518/ms2025-360

Abstract

Defects in collagen synthesis and metabolism underlie the pathogenesis of various pathological conditions, including hereditary disorders (Ehlers-Danlos syndrome, osteogenesis imperfecta (brittle bone disease), Stickler syndrome) and acquired diseases (systemic scleroderma, rheumatoid arthritis, systemic lupus erythematosus, dermatomyositis, scurvy, liver fibrosis (cirrhosis), pulmonary fibrosis, cardiac fibrosis, renal fibrosis, keloid (hypertrophic) scars, osteoarthritis, osteoporosis, bullous epidermolysis, chronoand photoaging of the skin, cancer, etc.). Maintaining the physiological balance between the collagen synthesis and degradation processes is crucial for ensuring the structural integrity and functional activity of connective tissue. The review presents systematic data on the role of collagen in ensuring the structure and function of human body tissues, in particular, skin, as well as on collagen-associated mechanisms of skin aging in the nome and in hyperglycemic conditions accompanied by collagen glycation. The pharmacological justification of the use of glucagon-like peptide-1 (ArGPP-1) receptor agonists for the prevention of age-related skin changes is given. Understanding the mechanisms of collagen glycation is in the focus of anti-aging medicine and is critically important for developing strategies to slow skin aging. ArGPP-1 remains the object of close attention all over the world. The presented data on the positive effect of ArGPP-1 (Semavik®) on the ability to control hyperglycemia clearly demonstrate the enormous potential of these drugs in the prevention of age-related skin changes. Post-marketing studies of this group of drugs, especially newly appearing in the arsenal of the attending physician, in particular, Semavik®, will expand the range of practical approaches to their differentiated use and active implementation in clinical practice.

About the Authors

N. V. Shperling
Reaviz University
Russian Federation

Natalia V. Shperling - Dr. Sci. (Med.), Professor, Professor of Department of Clinical Medicine.

8, Bldg. 2а, Kalinina St., St Petersburg, 198095



A. V. Chaplygin
North-Western State Medical University named after I.I. Mechnikov; MedLegenda Clinic; St Petersburg Medical and Social Institute
Russian Federation

Aleхey V. Chaplygin - Cand. Sci. (Med.), Associate Professor of the Department of Dermatovenerology, North-Western SMU named after I.I. Mechnikov; Chief Medical Officer, MedLegenda Clinic; Associate Professor of the Department of Dermatovenerology, St Petersburg MSI.

41, Kirochnaya St., St Petersburg, 191015; 56, Komendantskiy Ave., St Petersburg, 197373; 72а, Kondratevskiy Ave., St Petersburg, 195271



N. V. Chaplygina
MedLegenda Clinic
Russian Federation

Natalia V. Chaplygina - Dermatovenerologist, Head, MedLegenda Clinic.

56, Komendantskiy Ave., St Petersburg, 197373



References

1. Pawlaczyk M, Lelonkiewicz M, Wieczorowski M. Age-dependent biomechanical properties of the skin. Poster Der Alergol. 2013;30(5):302–306. https://doi.org/10.5114/pdia.2013.38359.

2. Solano F. Metabolism and Functions of Amino Acids in the Skin. Adv Exp Med Biol. 2020;1265:187–199. https://doi.org/10.1007/978-3-030-45328-2_11.

3. Borzykh OB, Schneider NA, Karpova EI, Petrova MM, Demina OM, Nasyrova RF. Collagen synthesis in the skin, its functional and structural features. Medical News of North Caucasus. 2021;16(4):443–450. (In Russ.) https://doi.org/10.14300/mnnc.2021.16108.

4. Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. In: Halper J (ed.) Progress in Heritable Soft Connective Tissue Diseases. Advances in Experimental Medicine and Biology, vol 1348. Springer, Cham; 2021, pp. 5–43. https://doi.org/10.1007/978-3-030-80614-9_2.

5. Seo BR, Chen X, Ling L, Song YH, Shimpi AA, Choi S et al. Collagen microarchitecture mechanically controls myofi broblast diff erentiation. Proc Natl Acad Sci USA. 2020;117(21):11387–11398. https://doi.org/10.1073/pnas.1919394117.

6. Fisher G. The pathophysiology of photoaging of the skin. Cutis. 2005;75(2):5–8. Available at: https://pubmed.ncbi.nlm.nih.gov/15773537.

7. Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, Bae H. Survey and mechanism of skin depigmenting and lightening agents. Phytother Res. 2006;20(11):921–934. https://doi.org/10.1002/ptr.1954.

8. Cheng W, Yan-hua R, Fang-gang N, Guo-an Z. The content and ratio of type I and III collagen in skin differ with age and injury. African J Biotechnol. 2011;10(13):2524–2529.

9. Lu Y, Zhang S, Wang Y, Ren X, Han J. Molecular mechanisms and clinical manifestations of rare genetic disorders associated with type I collagen. Intractable Rare Dis Res. 2019;8(2):98–107. https://doi.org/10.5582/irdr.2019.01064.

10. McCarthy AD, Etcheverry SB, Bruzzone L, Lettieri G, Barrio DA, Cortizo AM. Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress. BMC Cell Biol. 2001;2:16. https://doi.org/10.1186/1471-2121-2-16.

11. Roy B, Yuan L, Lee Y, Bharti A, Mitra A, Shivashankar GV. Fibroblast rejuvenation by mechanical reprogramming and rediff erentiation. Proc Natl Acad Sci USA. 2020;117(19):10131–10141. https://doi.org/10.1073/pnas.1911497117.

12. Кадурина ТИ. Наследственные коллагенопатии: клиника, диагностика, лечение, диспансеризация. СПб.: Невский диалект; 2000. 270 с.

13. Zeng F, Harris RC. Epidermal growth factor, from gene organization to bedside. Semin Cell Dev Biol. 2014;28:2–11. https://doi.org/10.1016/j.semcdb.2014.01.011.

14. Tseluiko SS, Malyuk EA, Korneeva LS, Krasavina NP. Morphofunctional parameters of skin dermis and its changes during aging (review). Bulletin Physiology and Pathology of Respiration. 2016;1(60):111–116. (In Russ.) https://doi.org/10.12737/20130.

15. Potekhina Yu.P. Collagen Structure and Function. Russian Osteopathic Journal. 2016;(1-2):87–99. (In Russ.) https://doi.org/10.32885/2220-09752016-1-2-87-99.

16. Merl-Pham J, Basak T, Knüppel L, Ramanujam D, Athanason M, Behr J et al. Quantitative proteomic profiling of extracellular matrix and site-specific collagen post-translational modifications in an in vitro model of lung fibrosis. Matrix Biol Plus. 2019;1:100005. https://doi.org/10.1016/j.mbplus.2019.04.002.

17. Rajan AM, Ma RC, Kocha KM, Zhang DJ, Huang P. Dual function of perivas-cular fibroblasts in vascular stabilization in zebrafish. PLoS Genet. 2020;16(10):e1008800. https://doi.org/10.1371/journal.pgen.1008800.

18. Walters BD, Stegemann JP. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater. 2014;10(4):1488–1501. https://doi.org/10.1016/j.actbio.2013.08.038.

19. Kapuler O., Selskaya B., Galeeva A., Kamilov F. Metabolism of collagen fibers in the presence of age-related change. Vrach. 2015;(8):64–69. (In Russ.) Available at: https://vrachjournal.ru/ru/25877305-2015-08-16.

20. Bella J, Hulmes DJ. Fibrillar Collagens. Subcell Biochem. 2017;82:457–490. https://doi.org/10.1007/978-3-319-49674-0_14.

21. Hoop CL, Zhu J, Nunes AM, Case DA, Baum J. Revealing Accessibility of Cryptic Protein Binding Sites within the Functional Collagen Fibril. Biomolecules. 2017;7(4):76. https://doi.org/10.3390/biom7040076.

22. Kubanova AA, Smolyannikov VA, Sluzhaeva NG. Skin aging and possibility of its correction by collagen preparation. Vestnik Dermatologii i Venerologii. 2007;(5):70–73. (In Russ.) Available at: https://elibrary.ru/ijxhyn.

23. Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Exp Dermatol. 2021;30(1):146–161. https://doi.org/10.1111/exd.14121.

24. Avery N, Bailey A. The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathol Biol. 2006;54(7):387–395. https://doi.org/10.1016/j.patbio.2006.07.005.

25. Verhaegen P, Zuijlen Р, Pennings N, Marle J, Niessen F, Horst C, Middelkoop E. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair Regen. 2009;17(5):649–656. https://doi.org/10.1111/j.1524475X.2009.00533.x.

26. Miller E. Chemistry of collagens and their distribution. In: Piez KA, Raddi AH (eds.). Extracellular matrix. New York: Elsevier Science; 1984.

27. Wahyudi H, Reynolds AA, Li Y, Owen SC, Yu SM. Targeting collagen for diagnostic imaging and therapeutic delivery. J Control Release. 2016;240:323–331. https://doi.org/10.1016/j.jconrel.2016.01.007 12.

28. Ozcelikkale A, Dutton JC, Grinnell F, Han B. Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices. J R Soc Interface. 2017;14(135):20170287. https://doi.org/10.1098/rsif.2017.0287.

29. Chanut-Delalande H, Bonod-Bidaud C, Cogne S, Malbouyres M, Ramirez F, Fichard A, Ruggiero F. Development of a functional skin matrix requires deposition of collagen V heterotrimers. Mol Cell Biol. 2004;24(13):6049–6057. https://doi.org/10.1128/MCB.24.13.6049-6057.2004.

30. Zhang Y, Tang Y, Quan X, Qiu L, Tian X, Liu Y, Gan L. Preliminary study of the ultrasonic measurement of thickness of skin in children. Zhonghua Shao Shang Za Zhi. 2007;23(5):352–355. Available at: https://pubmed.ncbi.nlm. nih.gov/18396762.

31. Geesin J, Gordon J, Berg R. Regulation of collagen synthesis in human dermal fibroblasts by the sodium and magnesium salts of ascorbyl-2-phosphate. Skin Pharmacol. 1993;6(1):65–71. https://doi.org/10.1159/000211089.

32. Varani J, Dame MK, Rittie L, Fligiel SEG, Kang S, Fisher GJ, Voorhees JJ. Decreased Collagen Production in Chronologically Aged Skin. Roles of Age-Dependent Alteration in Fibroblast Function and Defective Mechanical Stimulation. Am J Pathol. 2006;168(6):1861–1868. https://doi.org/10.2353/ajpath.2006.051302.

33. Prilepskaya VN, Nazarenko EG. Estriol in therapy of various gynecological diseases. Meditsinskiy Sovet. 2017;(2):8–13. (In Russ.) https://doi.org/10.21518/2079-701X-2017-2-8-13.

34. Talwar HS, Griffiths CE, Fisher GJ, Hamilton TA, Voorhees JJ. Reduced type I and type III procollagens in photodamaged adult human skin. J Invest Dermatol. 1995;105(2):285–290. https://doi.org/10.1111/1523-1747.ep12318471.

35. Lahmann C, Bergemann J, Harrison G, Young AR. Matrix metalloproteinase-1 and skin ageing in smokers. Lancet. 2001;357(9260):935–936. https://doi.org/10.1016/S0140-6736(00)04220-3.

36. Mine S, Fortunel NO, Pageon H, Asselineau D. Aging Alters Functionally Human Dermal Papillary Fibroblasts but Not Reticular Fibroblasts: A New View of Skin Morphogenesis and Aging. PLoS ONE. 2008;3(12):e4066. https://doi.org/10.1371/journal.pone.0004066.

37. Robert L. An original approach to ageing: an appreciation of Fritz Verzar’s contribution in the light of the last 50 years of gerontological facts and thinking. Gerontology. 2006;52(5):268–274. https://doi.org/10.1159/000094607.

38. Park S, Jung WH, Pittman M, Chen J, Chen Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J Biomech Eng. 2020;142(10):100804. https://doi.org/10.1115/1.4048110.

39. Mays P, Bishop J, Laurent G. Age-related changes in the proportion of types I and III collagen. Mech Ageing Dev. 1988;45(3):203–212. https://doi.org/10.1016/0047-6374(88)90002-4.

40. Ansari NA, Rasheed Z. Non-enzymatic glycation of proteins: From diabetes to cancer. Biomeditsinskaya Khimiya. 2010;56(2):168–178. (In Russ.) https://doi.org/10.1134/S1990750809040027.

41. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–146. https://doi.org/10.1007/s001250051591.

42. Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys. 20031;419(1):89–96. https://doi.org/10.1016/j.abb.2003.08.016.

43. Dyer DG, Blackledge JA, Katz BM, Hull CJ, Adkisson HD, Thorpe SR et al. The Maillard reaction in vivo. Z Ernahrungswiss. 1991;30(1):29–45. https://doi.org/10.1007/BF01910730.

44. Ansari NA, Ali R. Glycated lysine residues: a marker for non-enzymatic protein glycation in age-related diseases. Disease Markers. 2011;30(6):317–324. https://doi.org/10.3233/DMA-2011-0791.

45. Titov VN, Khokhlova NV, Shiryaeva JK. Glucose, glycotoxins, and protein glycation products: the role in pathogenesis. Clinical Medicine (Russian Journal). 2013;(3):15–24. (In Russ.) Available at: https://cyberleninka.ru/article/n/glyukoza-glikotoksiny-i-produkty-glikirovaniya-proteinov-rolv-patogeneze.

46. Glenn JV, Stitt AW. The role of advanced glycation end products in retinal ageing and disease. Biochim Biophys Acta. 2009;1790(10):1109–1116. https://doi.org/10.1016/j.bbagen.2009.04.016.

47. Semba RD, Ferrucci L, Sun K, Beck J, Dalal M, Varadhan R et al. Advanced glycation end products and their circulating receptors predict cardiovascular disease mortality in older community-dwelling women. Aging Clin Exp Res. 2009;21(2):182–190. https://doi.org/10.1007/BF03325227.

48. Krautwald M, Münch G. Advanced glycation end products as biomarkers and gerontotoxins – A basis to explore methylglyoxal-lowering agents for Alzheimer’s disease? Exp Gerontol. 2010;45(10):744–751. https://doi.org/10.1016/j.exger.2010.03.001.

49. Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun. 2015;458(2):221–226. https://doi.org/10.1016/j.bbrc.2015.01.140.

50. Gavrilova AO, Severina AS, Shamhalova MSh, Shestakova MV. The role of advanced glycation аnd products in patogenesis of diabetic nephropathy. Diabetes Mellitus. 2021;24(5):461–469. (In Russ.) https://doi.org/10.14341/DM12784.

51. Yan HD, Li XZ, Xie JM, Li M. Effects of advanced glycation end products on renal fibrosis and oxidative stress in cultured NRK-49F cells. Chin Med J. 2007;120(9):787–793. https://doi.org/10.1097/00029330-200705010-00010.

52. Gasparotto J, Girardi CS, Somensi N, Ribeiro CT, Moreira JCF, Michels M et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293(1):226–244. https://doi.org/10.1074/jbc.M117.786756.

53. Shevtsova AI, Tkachenko VA. End products of glycation and their receptors in cardiovascular diseases. Journal of the Grodno State Medical University. 2019;17(1):11–16. (In Russ.) https://doi.org/10.25298/2221-8785-2019-17-1-11-16.

54. Menini S, Iacobini C, Ricci C, Fantauzzi CB, Salvi L, Pesce CM et al. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. Cardiovasc Res. 2013;100(3):472–480. https://doi.org/10.1093/cvr/cvt206.

55. Ott C, Jacobs K, Haucke E, Navarrete SA, Grune T, Simm A. Role of advanced glycation end-products in cellular signaling. Redox Biol. 2014;9(2):411–429. https://doi.org/10.1016/j.redox.2013.12.016.

56. Xue J, Manigrasso M, Scalabrin M, Rai V, Reverdatto S, Burz DS et al. Change in the Molecular Dimension of a RAGE-Ligand Complex Triggers RAGE Signaling. Structure. 2016;24(9):1509–1522. https://doi.org/10.1016/j.str.2016.06.021.

57. Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 1994;43(5):676–683. https://doi.org/10.2337/diab.43.5.676.

58. Elgawish A, Glomb M, Friedlander M, Monnier VM. Involvement of hydrogen peroxide in collagen cross-linking by high glucose in vitro and in vivo. J Biol Chem. 1996;271(22):12964–12971. https://doi.org/10.1074/jbc.271.22.12964.

59. Ferreira AE, Ponces Freire AM, Voit EO. A quantitative model of the generation of N(epsilon)-(carboxymethyl)lysine in the Maillard reaction between collagen and glucose. Biochem J. 2003;376(1):109–121. https://doi.org/10.1042/BJ20030496.

60. Bondar IA, Klimontov VV. Collagen metabolic changes in diabetic nephropathy. Problemy Endokrinologii. 2005;51(2):23–28. (In Russ.) https://doi.org/10.14341/probl200551223-28.

61. Kalandia MM, Tokmakova AYu, Galstyan GR. The role of glycation end products in the development and progression of diabetic neuroosteoarthropathy. Problemy Endokrinologii. 2021;67(3):4–9. (In Russ.) https://doi.org/10.14341/probl12778.

62. Bova AA, Gromova YuM. Modern possibilities and prospects for the use of glucagon-like peptide-1 receptor agonists from the position of a cardiologist. Meditsinskie Novosti. 2021;(7):6–12. (In Russ.) Available at: https://www.mednovosti.by/Journal.aspx?id=442.

63. Marx N, Davies MJ, Grant PJ, Mathieu C, Petrie JR, Cosentino F, Buse JB. Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. Lancet Diabetes Endocrinol. 2021;9(1):46–52. https://doi.org/10.1016/S2213-8587(20)30343-0.

64. Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev. 1999;20(6): 876–913. https://doi.org/10.1210/edrv.20.6.0385.

65. Graaf C, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ et al. Glucagonlike peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol Rev. 2016;68(4):954–1013. https://doi.org/10.1124/pr.115.011395.

66. Andersen A, Lund A, Knop FK, Vilsbоll T. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018;14(7):390–403. https://doi.org/10.1038/s41574-018-0016-2.

67. Cryer PE. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology. 2012;153(3):1039–1048. https://doi.org/10.1210/en.2011-1499.

68. Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes.Diabetes Spectr. 2017;30(3):202–210. https://doi.org/10.2337/ds16-0026.

69. Nauck MA, Kemmeries G, Holst JJ, Meier JJ. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes. 2011;60(5):1561–1565. https://doi.org/10.2337/db10-0474.

70. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–742. https://doi.org/10.1038/nrendo.2012.140.

71. DeFronzo RA, Triplitt CL, Abdul-Ghani M, Cersosimo E. Novel agents for the treatment of type 2 diabetes. Diabetes Spectr. 2014;27(2):100–112. https://doi.org/10.2337/diaspect.27.2.100.

72. Nauck MA, Meier JJ. Management of endocrine disease: are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019;181(6):211–134. https://doi.org/10.1530/EJE-19-0566.

73. Romera I, Cebrián-Cuenca A, Álvarez-Guisasola F, Gomez-Peralta F, Reviriego J. A review of practical issues on the use of glucagon-like peptide-1 receptor agonists for the management of type 2 diabetes. Diabetes Ther. 2019;10(1):5–19. https://doi.org/10.1007/s13300-018-0535-9.

74. Miñambres I, Pérez A. Is there a justification for classifying GLP-1 receptor agonists as basal and prandial? Diabetol Metab Syndr. 2017;9:6. https://doi.org/10.1186/s13098-017-0204-6.

75. Lyseng-Williamson KA. Glucagon-like peptide-1 receptor agonists in type 2 diabetes: their use and differential features. Clin Drug Investig. 2019;39(8):805–819. https://doi.org/10.1007/s40261-019-00826-0.

76. George C, Byun A, Howard-Thompson A. New injectable agents for the treatment of type 2 diabetes part 2-glucagon-like peptide-1 (GLP-1) agonists. Am J Med. 2018;131(11):1304–1306. https://doi.org/10.1016/j.amjmed.2018.05.043.

77. Ametov AS, Nevolnikova AO, Tertychnaya EA. The advantage of using complex therapy for diabetic polyneuropathy in patients with type 2 diabetes mellitus. Endocrinology: News, Opinions, Training. 2019;28(3):44–53. (In Russ.) https://doi.org/10.24411/2304-9529-2019-13005.

78. Antsiferov MB, Koteshkova OM. The significance and place of the glucagonlike peptide-1 analog liraglutide in the new paradigm of type 2 diabetes treatment. Lechebnoe Delo. 2018;(2):50–58. (In Russ.) https://doi.org/10.24411/2071-53152018-12002.

79. Nauck MA, Meier JJ. Pioneering oral peptide therapy for patients with type 2 diabetes. Lancet Diabetes Endocrinol. 2019;7(7):500–502. https://doi.org/10.1016/S2213-8587(19)30182-2.

80. Karpov YuA, Starostina EG. Semaglutide (Ozempik) from the point of view of an endocrinologist and cardiologist: the possibilities of analogues of glucagon-like peptide-1 are far from exhausted. Atmosphere. Cardiology News. 2019;(4):3–17. (In Russ.) Available at: http://www.atmosphere-ph.ru/modules.php?name=Magazines&sop=viewarticle&magid=4&issueid=482&artid=5986.

81. Blundell J, Finlayson G, Axelsen M, Flint A, Gibbons C, Kvist T, Hjerpsted JB. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab. 2017;19(9):1242–1251. https://doi.org/10.1111/dom.12932.

82. Kadowaki T, Isendahl J, Khalid U, Lee SY, Nishida T, Ogawa W et al. Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an east Asian population (STEP 6): a randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diabetes Endocrinol. 2022;10(3):193–206. https://doi.org/10.1016/S2213-8587(22)00008-0.

83. Gou Y, Schwartz MW. How should we think about the unprecedented weight loss efficacy of incretin-mimetic drugs? J Clin Invest. 2023;133(19):e174597. https://doi.org/10.1172/JCI174597.

84. Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radical Research. 2013;47(1):3–27. https://doi.org/10.3109/10715762.2013.815348.

85. Lingelbach LB, Mitchell AE, Rucker RB, McDonald RB. Accumulation of advanced glycation end-products in aging male Fischer 344 rats during long-term feeding of various dietary carbohydrates. J Nutr. 2000;130(5):1247–1255. https://doi.org/10.1093/jn/130.5.1247.

86. Petrica L, Vlad A, Gluhovschi G, Gadalean F, Dumitrascu V, Vlad D et al. Glycated peptides are associated with the variability of endothelial dysfunction in the cerebral vessels and the kidney in type 2 diabetes mellitus patients: a cross-sectional study. J Diabetes Complications. 2015;29(2):230–237. https://doi.org/10.1016/j.jdiacomp.2014.11.014.

87. Deluyker D, Evens L, Bito V. Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs. Amino Acids. 2017;49(9):1535–1541. https://doi.org/10.1007/s00726-017-2464-8.

88. Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end-products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci. 2012;317(1-2):1–5. https://doi.org/10.1016/j.jns.2012.02.018.

89. Sadykov RF, Park H, Kim Y, Lee S, Ha S, Lee S, Oh M. Glycation End Products: Markers of Ageing and Age-Related Diseases. What is the Cause and Can It Be Controlled? Problems of Geroscience. 2023;(4):254–256. (In Russ.) Available at: https://www.geronauka.com/jour/article/view/48.

90. Li X, Zheng T, Sang S, Lv L. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J Agric Food Chem. 2014;62(50):12152–12158. https://doi.org/10.1021/jf504132x.

91. Spasov AA, Rashchenko AI. Therapeutic potential of crosslink breakers. Journal of Volgograd State Medical University. 2016;57(1):12–15. (In Russ.) Available at: https://journals.eco-vector.com/1994-9480/article/view/118919.


Review

For citations:


Shperling NV, Chaplygin AV, Chaplygina NV. Hyperglycemia in the focus of prevention of age-related skin changes. Meditsinskiy sovet = Medical Council. 2025;(14):184-192. (In Russ.) https://doi.org/10.21518/ms2025-360

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)