Preview

Meditsinskiy sovet = Medical Council

Advanced search

Phytotherapy in chronic liver diseases

https://doi.org/10.21518/ms2025-382

Abstract

The liver is involved in the metabolism and detoxification of xenobiotics, as well as in maintaining homeostasis. Impaired liver function has been linked with diseases such as alcoholic liver disease, metabolically associated fatty liver disease, hepatitis, cirrhosis, and liver cancer. Drug-induced liver injury remains a significant challenge. These liver diseases are collectively responsible for the significant mortality worldwide. Although traditional treatments help control symptoms and slow down the progression of liver diseases, they are frequently hindered by issues such as drug resistance and side effects. The treatment of liver diseases with herbal medicinal products offers a way for addressing these limitations, as numerous plant-based medicines exhibit hepatoprotective properties due to their bioactive compounds, such as alkaloids, glycosides, and flavonoids. These natural agents not only mitigate liver injury, but also stimulate immune processes that underlie the treatment of chronic diseases. This article examines the hepatobiliary injury mechanisms and highlights the therapeutic potential of traditionally used medicinal plants in treating and preventing the liver diseases. Published evidence on the therapeutic properties of herbal medicinal products show the importance of the integration of traditional medical knowledge with modern advancements, particularly in the areas of hepatoprotection, immunomodulation, and the treatment of chronic liver diseases. This article was aimed to evaluate the therapeutic potential of herbal medicinal products as part of the complex treatment of major liver diseases. The article explores the biological activity of individual herbal medicinal products, identifies their biologically active compounds, and determines the pathways by which they mitigate liver injury.

About the Author

T. E. Polunina
Russian University of Medicine (ROSUNIMED)
Россия

Tatiana E. Polunina - Dr. Sci. (Med.), Professor of the Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine (ROSUNIMED).

4, Dolgorukovskaya St., Moscow, 127006



References

1. Pandey B, Baral R, Kaundinnyayana A, Panta S. Promising hepatoprotective agents from the natural sources: a study of scientific evidence. Egypt Liver J. 2023;13(1):14. https://doi.org/10.1186/s43066-023-00248-w.

2. Golabi P, Paik JM, Eberly K, de Avila L, Alqahtani SA, Younossi ZM. Causes of death in patients with Non-alcoholic Fatty Liver Disease (NAFLD), alcoholicliver disease and chronic viral Hepatitis B and C. Ann Hepatol. 2022;27(1):100556. https://doi.org/10.1016/j.aohep.2021.100556.

3. Zhai M, Liu Z, Long J, Zhou Q, Yang L, Zhou Q, Dai Y. The incidence trends of liver cirrhosis caused by nonalcoholic steatohepatitis via the GBD study 2017. Sci Rep. 2021;11(1):5195. https://doi.org/10.1038/s41598-021-84577-z.

4. Maev IV, Polunina TE. Drug-induced liver injury: diagnosis of exclusion. Terapevticheskii Arkhiv. 2023;95(8):611–620. (In Russ.) https://doi.org/10.26442/00403660.2023.08.202329.

5. EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes Facts. 2024;17(4):374–444. https://doi.org/10.1159/000539371.

6. Bilson J, Cuthbertson DJ, Byrne CD. Evolving models of care in patients with metabolic dysfunctionassociated steatotic liver disease, recognizing its population burden and the impact of metabolic dysfunction on incident rates of hepatic and extrahepatic outcomes. Metab Target Organ Damage. 2025;5:27. https://doi.org/10.20517/mtod.2025.28.

7. Younossi ZM, Zelber-Sagi S, Lazarus JV, Wong VW, Yilmaz Y, Duseja A et al. Global Consensus Recommendations for Metabolic DysfunctionAssociated Steatotic Liver Disease and Steatohepatitis. Gastroenterology. 2025;169(5):1017–1032.e2. https://doi.org/10.1053/j.gastro.2025.02.044.

8. Maev IV, Andreev DN, Kucheryavyy YuA. Metabolically associated fatty liver disease – a disease of the 21st century: A review. Consilium Medicum. 2022;24(5):325–332. (In Russ.) https://doi.org/10.26442/20751753.2022.5.201532.

9. Shi Y, Wang Q, Sun Y, Zhao X, Kong Y, Ou X et al. The Prevalence of Lean/Nonobese Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. J Clin Gastroenterol. 2020;54(4):378–387. https://doi.org/10.1097/MCG.0000000000001270.

10. Karlsen TH, Sheron N, Zelber-Sagi S, Carrieri P, Dusheiko G, Bugianesi E et al. The EASL-Lancet Liver Commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet. 2022;399(10319):61–116. https://doi.org/10.1016/S0140-6736(21)01701-3.

11. Tan HK, Yates E, Lilly K, Dhanda AD. Oxidative stress in alcohol-related liver disease, World J Hepatol. 2020;12(7):332–349. https://doi.org/10.4254/wjh.v12.i7.332.

12. Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol. 2023:14:1205821. https://doi.org/10.3389/fimmu.2023.1205821.

13. Contreras-Zentella ML, Villalobos-García D, Hernández-Muñoz R. Ethanol metabolism in the liver, the induction of oxidant stress, and the antioxidant defense system. Antioxidants. 2022;11(7):1258. https://doi.org/10.3390/antiox11071258.

14. Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Durán-González P, Morales-García JÁ, Segovia-Rodríguez L et al. The immune system through the lens of alcohol intake and gut microbiota. Int J Mol Sci. 2021;22(14):7485. https://doi.org/10.3390/ijms22147485.

15. Eshete MA, Molla EL. Cultural significance of medicinal plants in healing human ailments among Guji semi-pastoralist people, Suro Barguda District, Ethiopia. J Ethnobiol Ethnomed. 2021;17(1):61. https://doi.org/10.1186/s13002-021-00487-4.

16. Ugwu CE, Suru SM. Medicinal plants with hepatoprotective potentials against carbon tetrachloride-induced toxicity: a review. Egypt Liver J. 2021;11:88. https://doi.org/10.1186/s43066-021-00161-0.

17. Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol. 2024;98(8):2331–2351. https://doi.org/10.1007/s00204-024-03758-7.

18. Li H, Liang J, Han M, Gao Z. Polyphenols synergistic drugs to ameliorate nonalcoholic fatty liver disease via signal pathway and gut microbiota: A review. J Adv Res. 2025:68:43–62. https://doi.org/10.1016/j.jare.2024.03.004.

19. Gupta A, Pandey AK. Plant secondary metabolites with hepatoprotective efficacy. In: Galanakis CM (ed.). Nutraceuticals and Natural Product Pharmaceuticals. Academic Press; 2019, pp. 71–104. https://doi.org/10.1016/B978-0-12-816450-1.00003-9.

20. Zhou M, Deng Y, Liu M, Liao L, Dai X, Guo C et al. The pharmacological activity of berberine, a review for liver protection. Eur J Pharmacol. 2021;890:173655. https://doi.org/10.1016/j.ejphar.2020.173655.

21. Aladejana EB, Aladejana AE. Hepatoprotective activities of polyherbal formulations: A systematic review. J Med Plants Econ Dev. 2023;7(1):a206. https://doi.org/10.4102/jomped.v7i1.206.

22. Foghis M, Bungau SG, Bungau AF, Vesa CM, Purza AL, Tarce AG et al. Plants-based medicine implication in the evolution of chronic liver diseases. Biomed Pharmacother. 2023;158:114207. https://doi.org/10.1016/j.biopha.2022.114207.

23. Aghemo A, Alekseeva OP, Angelico F, Bakulin IG, Bakulina NV, Bordin D et al. Role of silymarin as antioxidant in clinical management of chronic liver diseases: a narrative review. Ann Med. 2022;54(1):1548–1560. https://doi.org/10.1080/07853890.2022.2069854.

24. Orlova SV, Vodolazkaya AN, Tarasova OI, Nikitina EA, Prokopenko EV, Balashova NV et al. Phytonutrients in complex diet therapy for alcoholic liver disease and non-alcoholic fatty liver disease. Medical Alphabet. 2024;(16):13–18. (In Russ.) https://doi.org/10.33667/2078-5631-2024-16-13-18.

25. Phimarn W, Sungthong B, Itabe H. Effects of Triphala on Lipid and Glucose Profiles and Anthropometric Parameters: A Systematic Review. J Evid Based Integr Med. 2021;26:2515690X211011038. https://doi.org/10.1177/2515690X211011038.

26. Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185. https://doi.org/10.3390/foods8060185.

27. Suk S, Kwon GT, Lee E, Jang WJ, Yang H, Kim JH et al. Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high-fat diet-fed mice. Mol Nutr Food Res. 2017;61(10):1700139. https://doi.org/10.1002/mnfr.201700139.

28. Nirmala K, Prasanna Krishna T, Polasa K. Modulation of xenobiotic metabolism in ginger (Zingiber officinale Roscoe) fed rats. Int J Nutr Metab. 2010;2(3):56–62. Available at: https://academicjournals.org/journal/IJNAM/article-abstract/E09ECB14080.

29. Eita AAB. Milk thistle (Silybum marianum (L.) Gaertn.): an overview about its pharmacology and medicinal uses with an emphasis on oral diseases. J Oral Biosci. 2022;64(1):71–76. https://doi.org/10.1016/j.job.2021.12.005.

30. Boojar MMA, Boojar MMA, Golmohammad S. Overview of Silibinin antitumor effects. J Herb Med. 2020;23:100375. https://doi.org/10.1016/j.hermed.2020.100375.

31. Arab FL, Yousefi F, Jaafari MR, Rajabian A, Dana H, Tabasi N et al. Evaluation of the immune-modulatory, anti-oxidant, proliferative, and anti-apoptotic effects of nano-silymarin on mesenchymal stem cells isolated from multiple sclerosis patients’ adipose tissue sources. J Funct Foods. 2024;113:105958. Available at: https://agris.fao.org/search/en/providers/122436/records/6759786cc7a957febdf7f915.

32. Chen JY, Yang YJ, Meng XY, Lin RH, Tian XY, Zhang Y et al. Oxysophoridine inhibits oxidative stress and inflammation in hepatic fibrosis via regulating Nrf2 and NF-κB pathways. Phytomedicine. 2024;132:155585. https://doi.org/10.1016/j.phymed.2024.155585.

33. Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol. 2023;14:1217165. https://doi.org/10.3389/fendo.2023.1217165.

34. Pferschy-Wenzig EM, Atanasov AG, Malainer C, Noha S, Kunert O, Schuster D et al. Identification of Isosilybin A from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J Nat Prod. 2014;77:842–847. https://doi.org/10.1021/np400943b.

35. Das S, Roy P, Auddy RG, Mukherjee A. Silymarin nanoparticle prevents paracetamol-induced hepatotoxicity. Int J Nanomed. 2011;6:1291–1301. https://doi.org/10.2147/IJN.S15160.

36. Luper S. A review of plants used in the treatment of liver disease: part 1. Altern Med Rev. 1998;3(6):410–421. Available at: https://pubmed.ncbi.nlm.nih.gov/9855566/.

37. Trappoliere M, Caligiuri A, Schmid M, Bertolani C, Failli P, Vizzutti F et al. Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J Hepatol. 2009;50(6):1102–1111. https://doi.org/10.1016/j.jhep.2009.02.023.

38. Boigk G, Stroedter L, Herbst H, Waldschmidt J, Riecken EO, Schuppan D. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology. 1997;26(3):643–649. https://doi.org/10.1002/hep.510260316.

39. Lieber CS, Leo MA, Cao Q, Ren C, DeCarli LM. Silymarin retards the progression of alcohol-induced hepatic fibrosis in baboons. J Clin Gastroenterol. 2003;37(4):336–339. https://doi.org/10.1097/00004836-200310000-00013.

40. Tyagi A, Agarwal C, Harrison G, Glode LM, Agarwal R. Silibinin causes cell cycle arrest and apoptosis in human bladder transitional cell carcinoma cells by regulating CDKI-CDK-cyclin cascade, and caspase 3 and PARP cleavages. Carcinogenesis. 2004;25(9):1711–1720. https://doi.org/10.1093/carcin/bgh180.

41. Peterson CT, Denniston K, Chopra D. Therapeutic Uses of Triphala in Ayurvedic Medicine. J Altern Complement Med. 2017;23(8):607–614. https://doi.org/10.1089/acm.2017.0083.

42. Belapurkar P, Goyal P, Tiwari-Barua P. Immunomodulatory effects of triphala and its individual constituents: a review. Indian J Pharm Sci. 2014;76(6):467–475. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC4293677/.

43. Salunke M, Banjare J, Bhalerao S. Effect of selected herbal formulations on anthropometry and body composition in overweight and obese individuals: randomized, double blind, placebo-controlled study. J Herb Med. 2019;17-18: 100298. https://doi.org/10.1016/j.hermed.2019.100298.

44. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–590. https://doi.org/10.1016/S0140-6736(12)60367-5.

45. Cercato C, Fonseca FA. Cardiovascular risk and obesity. Diabetol Metab Syndr. 2019;11:74. https://doi.org/10.1186/s13098-019-0468-0.

46. Choubey S, Varughese LR, Kumar V, Beniwal V. Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm Pat Anal. 2015;4(4):305–315. https://doi.org/10.4155/ppa.15.14.

47. Patel HJ, Patel JS, Patel KN, Seth AK, Patel KD. Clinical study of hepatoprotective drug Phyllanthus amarus. Res J Pharm Biol Chem Sci. 2010;1(2):335. Available at: https://www.rjpbcs.com/pdf/Old%20files/47.pdf.

48. Idowu KS, Olaoye AB, Awonegan AP. The effect of Phyllanthus amarus leaf extract on the lipid profile of gentamicininduced hepatotoxicity in albino rats. GSC Biol Pharm Sci. 2024;28(3):233–239. https://doi.org/10.30574/gscbps.2024.28.3.0331.

49. Vasala PA. Ginger. In: Peter KV (ed.). Handbook of Herbs and Spices. CRC Press, Woodhead Pub; 2001. Vol. 1, pp. 195–206. Available at: https://www.drhazhan.com/Handbook%20of%20herbs%20and%20spices.pdf.

50. Rahimlou M, Yari Z, Hekmatdoost A, Alavian SM, Keshavarz SA. Ginger Supplementation in Nonalcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Hepat Mon. 2016;16(1):e34897. https://doi.org/10.5812/hepatmon.34897.


Review

For citations:


Polunina TE. Phytotherapy in chronic liver diseases. Meditsinskiy sovet = Medical Council. 2025;(15):139-147. (In Russ.) https://doi.org/10.21518/ms2025-382

Views: 451

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)