Preview

Meditsinskiy sovet = Medical Council

Advanced search

The importance of bismuth preparations for increasing the effectiveness of therapy for Helicobacter pylori infection

https://doi.org/10.21518/ms2025-390

Abstract

Bismuth belongs to the group of heavy metals, but it has the lowest toxicity among them, including due to its weak solubility in aqueous and biological media. At the same time, bismuth compounds are promising for use in medicine due to their high biological activity. These substances are used in the treatment of various diseases, including cancer, because they have antiproliferative activity (induce apoptosis, inhibit proteasomes, modulate signaling pathways). For the treatment of Helicobacter pylori infection, drugs are used, mainly based on bismuth tricalcium dicitrate, which demonstrates high efficacy and a low incidence of resistance to the pathogen. Problematic aspects used in H. eradication pylori schemes are their empirical choice in the absence of a routine personalized approach to it, a low level of eradication control by the methods recommended for this purpose, the sensitivity of the pharmacodynamic effects of the scheme components to the pharmaceutical properties of each other, and the mentioned resistance of the pathogen to antibacterial drugs. Preparations based on bismuth tricalcium dicitrate, which have their own bactericidal activity independent of environmental conditions, several mechanisms of action that do not induce known pathways of resistance development, when used as part of various eradication regimens, increase their effectiveness without reducing tolerability. The main results of numerous clinical studies confirm these statements. An additional advantage of bismuth compounds included in medicinal preparations is their gastroprotective effect, which makes it possible to expand the range of indications due to gastric pathology, accompanied by the formation of erosive and ulcerative defects of its mucous membrane (erosive gastritis, peptic ulcer, etc.), as well as an antidiarrhoeal effect, which is of clinical importance in irritable bowel syndrome and functional diarrhea. The safety of using bismuth tricalcium dicitrate in low doses and during short courses has been confirmed by large meta-analyses; serious side effects are extremely rare and are not associated with neurotoxicity. The presented set of data indicates the prospects for further study and clinical use of bismuth in antitumor, antibacterial and gastroenterological practice.

About the Authors

V. N. Drozdov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Vladimir N. Drozdov - Dr. Sci. (Med.), Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University).

8, Bldg. 2, Trubetskaya St., Moscow, 119991



K. N. Khalaidzheva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Kseniya N. Khalaidzheva - Cand. Sci. (Med.), Assistant Professor, Department of Clinical Pharmacology and Propaedeutics of Internal Medicine, Sechenov First Moscow State Medical University (Sechenov University).

8, Bldg. 2, Trubetskaya St., Moscow, 119991



S. Yu. Serebrova
Sechenov First Moscow State Medical University (Sechenov University); Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Svetlana Yu. Serebrova - Dr. Sci. (Med.), Professor of Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University); Chief Scientific Researcher, Scientific Centre for Expert Evaluation of Medicinal Products.

8, Bldg. 2, Trubetskaya St., Moscow, 119991; 8, Bldg. 2, Petrovsky Boulevard, Moscow, 127051



N. B. Lazareva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Natalia B. Lazareva - Dr. Sci. (Med.), Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University).

8, Bldg. 2, Trubetskaya St., Moscow, 119991



E. Yu. Esakova
Sechenov First Moscow State Medical University (Sechenov University); Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Elena Yu. Esakova - Cand. Sci. (Pharm.), Assistant Professor of Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University); Leading Analyst of the Scientific Department of Clinical Pharmacology, Scientific Centre for Expert Evaluation of Medicinal Products.

8, Bldg. 2, Trubetskaya St., Moscow, 119991; 8, Bldg. 2, Petrovsky Boulevard, Moscow, 127051



References

1. Федоров ПИ. Висмут. В: Кнунянц ИЛ (ред.). Химическая энциклопедия: в 5 т. М.: Советская энциклопедия; 1988. Т. 1, с. 379–380.

2. Matias M, Campos G, Santos AO, Falcão A, Silvestre S, Alves G. Potential antitumoral 3,4-dihydropyrimidin-2-(1H)-ones: synthesis, in vitro biological evaluation and QSAR studies. RSC Adv. 2016;6:84943–84958. https://doi.org/10.1039/C6RA14596E.

3. Pinto RM, Salvador JA, Le Roux C, Paixão JA. Bismuth(III) triflate-catalyzed direct conversion of corticosteroids into highly functionalized 17-ketosteroids by cleavage of the C17-dihydroxyacetone side chain. J Org Chem. 2009;74(21):8488–8491. https://doi.org/10.1021/jo9018478.

4. Pinto RMA, Salvador JAR, Le Roux C, Carvalho RA, Beja AM, Paixão JA. Bismuth(III) triflate-catalyzed rearrangement of 16α,17α-epoxy-20-oxosteroids. Synthesis and structural elucidation of new 16α-substituted 17α-alkyl-17β-methyl-­Δ13-18-norsteroids. Tetrahedron. 2009;65(31):6169–6178. https://doi.org/10.1016/J.TET.2009.05.043.

5. Matias M, Campos G, Silvestre S, Falcão A, Alves G. Early preclinical evaluation of dihydropyrimidin(thi)ones as potential anticonvulsant drug candidates. Eur J Pharm Sci. 2017;102:264–274. https://doi.org/10.1016/j.ejps.2017.03.014.

6. Chan PF, Ang KP, Hamid RA. A bismuth diethyldithiocarbamate compound induced apoptosis via mitochondria-dependent pathway and suppressed invasion in MCF-7 breast cancer cells. Biometals. 2021;34(2):365–391. https://doi.org/10.1007/s10534-021-00286-0.

7. Shakibaie M, Forootanfar H, Ameri A, Adeli-Sardou M, Jafari M, Rahimi HR. Cytotoxicity of biologically synthesised bismuth nanoparticles against HT-29 cell line. IET Nanobiotechnol. 2018;12(5):653–657. https://doi.org/10.1049/iet-nbt.2017.0295.

8. Iuchi K, Tasaki Y, Shirai S, Hisatomi H. Upregulation of nuclear factor (erythroid-derived 2)-like 2 protein level in the human colorectal adenocarcinoma cell line DLD-1 by a heterocyclic organobismuth(III) compound: Effect of organobismuth(III) compound on NRF2 signaling. Biomed Pharmacother. 2020;125:109928. https://doi.org/10.1016/j.biopha.2020.109928.

9. Fujiwara Y, Mitani M, Yasuike S, Kurita J, Kaji T. An Organobismuth Compound that Exhibits Selective Cytotoxicity to Vascular Endothelial Cells in Vitro. J Health Sci. 2005;51(3):333–340. http://doi.org/10.1248/jhs.51.333.

10. Cabral-Romero C, Hernández-Delgadillo R, Nakagoshi-Cepeda SE, Sánchez-Najéra RI, Escamilla-García E, Solís-Soto JM et al. Antimicrobial and antitumor activities of an alginate-based membrane loaded with bismuth nanoparticles and cetylpyridinium chloride. J Appl Biomater Funct Mater. 2024;22:22808000241236590. https://doi.org/10.1177/22808000241236590.

11. García-Cuellar CM, Hernández-Delgadillo R, Torres-Betancourt JA, Solis-Soto JM, Meester I, Sánchez-Pérez Y et al. Cumulative antitumor effect of bismuth lipophilic nanoparticles and cetylpyridinium chloride in inhibiting the growth of lung cancer. J Appl Biomater Funct Mater. 2023;21:22808000231161177. https://doi.org/10.1177/22808000231161177.

12. Hernandez-Delgadillo R, García-Cuéllar CM, Sánchez-Pérez Y, Pineda-Aguilar N, Martínez-Martínez MA, Rangel-Padilla EE et al. In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. Int J Nanomedicine. 2018;13:6089–6097. https://doi.org/10.2147/IJN.S179095.

13. Kim YS, Brechbiel MW. An overview of targeted alpha therapy. Tumour Biol. 2012;33(3):573–590. https://doi.org/10.1007/s13277-011-0286-y.

14. Chan S, Wang R, Man K, Nicholls J, Li H, Sun H, Chan GC. A Novel Synthetic Compound, Bismuth Zinc Citrate, Could Potentially Reduce Cisplatin-Induced Toxicity Without Compromising the Anticancer Effect Through Enhanced Expression of Antioxidant Protein. Transl Oncol. 2019;12(5):788–799. https://doi.org/10.1016/j.tranon.2019.02.003.

15. Jiang H, Hong Y, Fan G. Bismuth Reduces Cisplatin-Induced Nephrotoxicity Via Enhancing Glutathione Conjugation and Vesicular Transport. Front Pharmacol. 2022;13:887876. https://doi.org/10.3389/fphar.2022.887876.

16. Peng J, Xiong Y, Lin Z, Sun L, Weng J. Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1-42 fibril formation. Sci Rep. 2015;5:10171. https://doi.org/10.1038/srep10171.

17. Burke KJ, Stephens LJ, Werrett MV, Andrews PC. Bismuth(III) Flavonolates: The Impact of Structural Diversity on Antibacterial Activity, Mammalian Cell Viability and Cellular Uptake. Chemistry. 2020;26(34):7657–7671. https://doi.org/10.1002/chem.202000562.

18. Solanki JS, Thapak TR, Bhardwaj A, Tripathi UN. Synthesis, structural characterization, and in vitro antimicrobial properties of salicylate and pyrazoline complexes of bismuth(III). J Coord Chem. 2011;64(2):369–376. https://doi.org/10.1080/00958972.2010.543458.

19. Shaikh AR, Giridhar R, Yadav MR. Bismuth-norfloxacin complex: synthesis, physicochemical and antimicrobial evaluation. Int J Pharm. 2007;332(1-2):24–30. https://doi.org/10.1016/j.ijpharm.2006.11.037.

20. Ripathi UN, Siddqui A, Solanki JS, Ahmad MS, Bhardwaj A, Thapak TR. Synthesis, Spectral Characterization, and Antimicrobial Activity of Arsenic(III) and Bismuth(III) tri[3(2´-hydroxyphenyl)-5-(4-subsituted phenyl)pyrazolinates]. Turk J Chem. 2009;33(2):257–266. https://doi.org/10.3906/kim-0806-3.

21. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F et al. Management of Helicobacter pylori infection--the Maastricht IV/ Florence Consensus Report. Gut. 2012;61(5):646–664. https://doi.org/10.1136/gutjnl-2012-302084.

22. Li Y, Choi H, Leung K, Jiang F, Graham DY, Leung WK. Global prevalence of Helicobacter pylori infection between 1980 and 2022: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023;8(6):553–564. https://doi.org/10.1016/S2468-1253(23)00070-5.

23. Bordin D, Morozov S, Plavnik R, Bakulina N, Voynovan I, Skibo I еt al. Helicobacter pylori infection prevalence in ambulatory settings in 2017–2019 in Russia: The data of real-world national multicenter trial. Helicobacter. 2022;27(5):e12924. https://doi.org/10.1111/hel.12924.

24. Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med. 2002;347(15):1175–1186. https://doi.org/10.1056/NEJMra020542.

25. Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 2015;64(9):1353–1367. https://doi.org/10.1136/gutjnl-2015-309252.

26. Wotherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, de Boni M, Isaacson PG. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342(8871):575–577. https://doi.org/10.1016/0140-6736(93)91409-f.

27. Chen LT, Lin JT, Tai JJ, Chen GH, Yeh HZ, Yang SS et al. Long-term results of anti-Helicobacter pylori therapy in early-stage gastric high-grade transformed MALT lymphoma. J Natl Cancer Inst. 2005;97(18):1345–1353. https://doi.org/10.1093/jnci/dji277.

28. Stathis A, Chini C, Bertoni F, Proserpio I, Capella C, Mazzucchelli L et al. Long-term outcome following Helicobacter pylori eradication in a retrospective study of 105 patients with localized gastric marginal zone B-cell lymphoma of MALT type. Ann Oncol. 2009;20(6):1086–1093. https://doi.org/10.1093/annonc/mdn760.

29. Choi IJ, Kim CG, Lee JY, Kim YI, Kook MC, Park B, Joo J. Family History of Gastric Cancer and Helicobacter pylori Treatment. N Engl J Med. 2020;382(5):427–436. https://doi.org/10.1056/NEJMoa1909666.

30. Pan KF, Li WQ, Zhang L, Liu WD, Ma JL, Zhang Y et al. Gastric cancer prevention by community eradication of Helicobacter pylori: a cluster-randomized controlled trial. Nat Med. 2024;30(11):3250–3260. https://doi.org/10.1038/s41591-024-03153-w.

31. Yamamichi N, Yamaji Y, Shimamoto T, Takahashi Y, Majima K, Wada R et al. Inverse time trends of peptic ulcer and reflux esophagitis show significant association with reduced prevalence of Helicobacter pylori infection. Ann Med. 2020;52(8):506–514. https://doi.org/10.1080/07853890.2020.1782461.

32. Azhari H, King JA, Coward S, Windsor JW, Ma C, Shah SC et al. The Global Incidence of Peptic Ulcer Disease Is Decreasing Since the Turn of the 21st Century: A Study of the Organisation for Economic Co-Operation and Development (OECD). Am J Gastroenterol. 2022;117(9):1419–1427. https://doi.org/10.14309/ajg.0000000000001843.

33. Jiang JX, Liu Q, Mao XY, Zhang HH, Zhang GX, Xu SF. Downward trend in the prevalence of Helicobacter pylori infections and corresponding frequent upper gastrointestinal diseases profile changes in Southeastern China between 2003 and 2012. Springerplus. 2016;5(1):1601. https://doi.org/10.1186/s40064-016-3185-2.

34. Ivashkin VT, Lapina TL, Maev IV, Drapkina OM, Kozlov RS, Sheptulin AA et al. Clinical Practice Guidelines of Russian Gastroenterological Association, Scientific Society for the Clinical Study of Human Microbiome, Russian Society for the Prevention of Non-Communicable Diseases, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy for H. pylori Diagnostics and Treatment in Adults. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022;32(6):72–93. (In Russ.) https://doi.org/10.22416/1382-4376-2022-32-6-72-93.

35. Nyssen OP, Bordin D, Tepes B, Pérez-Aisa Á, Vaira D, Caldas M et al. European Registry on Helicobacter pylori management (Hp-EuReg): patterns and trends in first-line empirical eradication prescription and out-comes of 5 years and 21 533 patients. Gut. 2021;70(1):40–54. https://doi.org/10.1136/gutjnl-2020-321372.

36. Ko SW, Kim YJ, Chung WC, Lee SJ. Bismuth supplements as the first-line regimen for Helicobacter pylori eradication therapy: Systemic review and meta-analysis. Helicobacter. 2019;24(2):e12565. https://doi.org/10.1111/hel.12565.

37. Manani RO, Abuga KO, Chepkwony HK. Pharmaceutical Equivalence of Clarithromycin Oral Dosage Forms Marketed in Nairobi County, Kenya. Sci Pharm. 2017;85(2):20. https://doi.org/10.3390/scipharm85020020.

38. Serebrova SYu, Kurguzova DO, Krasnykh LM, Vasilenko GF, Demchenkova YeYu, Lenkova NI et al. Kinetics of the omeprazole release from enteric dosage forms of different manufacturers. Pharmaceutical Chemistry Journal. 2023;57(10):37–45. (In Russ.) https://doi.org/10.30906/0023-1134-2023-57-10-37-45.

39. Tasman-Jones C, Maher C, Thomsen L, Lee SP, Vanderwee M. Mucosal defences and gastroduodenal disease. Digestion. 1987;37(Suppl 2):1–7. Available at: https://pubmed.ncbi.nlm.nih.gov/3622945/

40. Lee SP. A potential mechanism of action of colloidal bismuth subcitrate: diffusion barrier to hydrochloric acid. Scand J Gastroenterol Suppl. 1982;80:17–21. Available at: https://pubmed.ncbi.nlm.nih.gov/6962540.

41. Beil W, Bierbaum S, Sewing KF. Studies on the mechanism of action of colloidal bismuth subcitrate. II. Interaction with pepsin. Pharmacology. 1993;47(2):141–144. https://doi.org/10.1159/000139089.

42. Hall DW. Review of the modes of action of colloidal bismuth subcitrate. Scand J Gastroenterol Suppl. 1989;157:3–22. https://doi.org/10.3109/00365528909091043.

43. Konturek SJ, Radecki T, Piastucki I, Drozdowicz D. Studies on the gastroprotective and ulcer-healing effects of colloidal bismuth subcitrate. Digestion. 1987;37(Suppl 2):8–15. https://doi.org/10.1159/000199553.

44. Konturek SJ, Dembinski A, Warzecha Z, Bielanski W, Brzozowski T, Drozdowicz D. Epidermal growth factor (EGF) in the gastroprotective and ulcer healing actions of colloidal bismuth subcitrate (De-Nol) in rats. Gut. 1988;29(7):894–902. https://doi.org/10.1136/gut.29.7.894.

45. Lazebnik LB, Vasilev YuV (eds.). VIII Congress of the Scientific Society of Gastroenterologists of Russia. Standards for the diagnosis and treatment of acid-related diseases, including those associated with Helicobacter pylori (Third Moscow Agreement, February 4, 2005, with amendments adopted on March 6, 2008, at the VIII Congress of the Scientific Society of Gastroenterologists of Russia). Moscow, 2008. Experimental and Clinical Gastroenterology. 2008;(3):130–134. (In Russ.) Available at: https://elibrary.ru/mvlyin.

46. Bland MV, Ismail S, Heinemann JA, Keenan JI. The action of bismuth against Helicobacter pylori mimics but is not caused by intracellular iron deprivation. Antimicrob Agents Chemother. 2004;48(6):1983–1988. https://doi.org/10.1128/AAC.48.6.1983-1988.2004.

47. Han B, Zhang Z, Xie Y, Hu X, Wang H, Xia W, Multi-omics and temporal dynamics profiling reveal disruption of central metabolism in Helicobacter pylori on bismuth treatment. Chem Sci. 2018;9(38):7488–7497. https://doi.org/10.1039/c8sc01668b.

48. Beil W, Birkholz C, Wagner S, Sewing KF. Bismuth subcitrate and omeprazole inhibit Helicobacter pyloriF1-ATPase. Pharmacology. 1995;50(5):333–337. https://doi.org/10.1159/000139299.

49. Roghani HS, Massarrat S, Pahlewanzadeh MR, Dashti M. Effect of two different doses of metronidazole and tetracycline in bismuth triple therapy on eradication of Helicobacter pylori and its resistant strains. Eur J Gastroenterol Hepatol. 1999;11(7):709–712. https://doi.org/10.1097/00042737-199907000-00004.

50. Ge ZZ, Zhang DZ, Xiao SD, Chen Y, Hu YB. Does eradication of Helicobacter pylori alone heal duodenal ulcers?. Aliment Pharmacol Ther. 2000;14(1):53–58. https://doi.org/10.1046/j.1365-2036.2000.00673.x.

51. Li HM, Yang JC. Bismuth-Containing Therapy for Helicobacter pylori Eradication. Int J Clin Pharmacol Pharmacother. 2016;1:113. https://doi.org/10.15344/2456-3501/2016/113.

52. Wang Y, Hu L, Xu F, Quan Q, Lai YT, Xia W et al. Integrative approach for the analysis of the proteome-wide response to bismuth drugs in Helicobacter pylori. Chem Sci. 2017;8:4626. https://doi.org/10.1039/C7SC00766C.

53. Reum Choe A, Tae CH, Choi M, Shim KN, Jung HK. Systematic Review and Meta-Analysis: Bismuth Enhances the Efficacy for Eradication of Helicobacter pylori. Helicobacter. 2024;29(5):e13141. https://doi.org/10.1111/hel.13141.

54. Han Z, Li Y, Kong Q, Liu J, Wang J, Wan M et al. Efficacy of bismuth for antibiotic-resistant Helicobacter pylori strains eradication: A systematic review and meta-analysis. Helicobacter. 2022;27(6):e12930. https://doi.org/10.1111/hel.12930.

55. Ding YM, Li YY, Liu J, Wang J, Wan M, Lin MJ et al. The cure rate of 10-day bismuth-containing quadruple therapy for Helicobacter pylori eradication is equivalent to 14-day: a systematic review and meta-analysis. Clin Exp Med. 2023;23(4):1033–1043. https://doi.org/10.1007/s10238-022-00953-7.

56. Duan M, Kong Q, Wang H, Li Y. Optimal Duration of Bismuth-Containing Quadruple Therapy for Helicobacter pylori Eradication: A Systematic Review and Meta-Analysis. Helicobacter. 2024;29(5):e13144. https://doi.org/10.1111/hel.13144.

57. Salvador JA, Figueiredo SA, Pinto RM, Silvestre SM. Bismuth compounds in medicinal chemistry. Future Med Chem. 2012;4(11):1495–1523. https://doi.org/10.4155/fmc.12.95.

58. Hong Y, Lai YT, Chan GC, Sun H. Glutathione and multidrug resistance protein transporter mediate a self-propelled disposal of bismuth in human cells. Proc Natl Acad Sci U S A. 2015;112(11):3211–3216. https://doi.org/10.1073/pnas.1421002112.

59. Ford AC, Malfertheiner P, Giguere M, Santana J, Khan M, Moayyedi P. Adverse events with bismuth salts for Helicobacter pylori eradication: systematic review and meta-analysis. World J Gastroenterol. 2008;14(48):7361–7370. https://doi.org/10.3748/wjg.14.7361.

60. Yukhin YuM, Shcherbakov VP, Koledova ES, Trubin MYu. Obtaining the pharmaceutical substance bismuth tripotassium dicitrate. Pharmaceutical Chemistry Journal. 2025;59(4):37–44. (In Russ.) https://doi.org/10.30906/0023-1134-2025-59-4-37-44.

61. Burova LG, Yukhin YM, Gerlinskaya LA, Evstropov AN. Research of bismuth substituted antibacterial properties of substances on the basis of nanoparticles. Journal of Siberian Medical Sciences. 2015;(3):85. (In Russ.) Available at: https://jsms.elpub.ru/jour/article/view/176.


Review

For citations:


Drozdov VN, Khalaidzheva KN, Serebrova SY, Lazareva NB, Esakova EY. The importance of bismuth preparations for increasing the effectiveness of therapy for Helicobacter pylori infection. Meditsinskiy sovet = Medical Council. 2025;(15):8-15. (In Russ.) https://doi.org/10.21518/ms2025-390

Views: 108


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)