Preview

Meditsinskiy sovet = Medical Council

Advanced search

The impact of semaglutide and tirzepatide on skeletal muscle: Significant benefit or substantial risk?

https://doi.org/10.21518/ms2025-467

Abstract

Injectable incretin therapies (GLP-1 receptor agonists and GIP/GLP-1 dual agonists) have made a breakthrough in the treatment of obesity, demonstrating significant efficacy in weight reduction and improvement of cardiometabolic parameters. Numerous studies indicate that, in addition to gastrointestinal adverse events, these medications may contribute to a reduction in muscle mass, potentially worsening the metabolic status of patients. There is heterogeneity in the available data on the effects of incretin-based therapies on changes in lean mass in clinical trials: some studies report decreases in lean mass of 40% to 60% of total weight loss, while others show decreases in lean mass of approximately 15% or less of total weight loss. There are several potential reasons for this heterogeneity, including population-specific, drug-specific/molecular, and co-occurring effects. Furthermore, changes in lean mass may not always reflect changes in muscle mass, as this measure includes not only muscle but also organs, bone, fluids, and adipose tissue water. This is particularly relevant for elderly patients and those with sarcopenic obesity, for whom additional loss of muscle tissue can pose a serious risk. This review provides an extensive evidence base from studies examining the effects of GLP-1 receptor agonists and GIP/GLP-1 dual agonists on body composition in patients with type 2 diabetes and/or obesity, outlining the key pathophysiological mechanisms of muscle tissue alteration in obesity and weight loss. Based on current research, the reduction in muscle mass is discussed, along with the positive effects of weight loss on muscle function. Scientifically grounded strategies are proposed to minimize potential adverse effects on skeletal muscle. Approaches for initiating and conducting incretin therapy in individuals with sarcopenic obesity are discussed separately.

About the Authors

V. V. Salukhov
Military Medical Academy named after S.M. Kirov
Россия

Vladimir V. Salukhov, Dr. Sci. (Med.), Professor, Head of the 1st Department and Clinic (Advanced Physician Therapy) named after Academician N.S. Molchanov

6, Akademik Lebedev St., St Petersburg, 194044, Russia



S. B. Shustov
Military Medical Academy named after S.M. Kirov
Россия

Sergey B. Shustov, Dr. Sci. (Med.), Professor, Professor of the 1st Department and Clinic (Advanced Physician Therapy) named after Academician N.S. Molchanov

6, Akademik Lebedev St., St Petersburg, 194044, Russia



K. V. Petrankov
Military Medical Academy named after S.M. Kirov
Россия

Kirill V. Petrankov, Cand. Sci. (Med.), Endocrinologist of the 1st Department and Clinic (Advanced Physician Therapy) named after Academician N.S. Molchanov 

6, Akademik Lebedev St., St Petersburg, 194044, Russia



References

1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.

2. Dedov II, Shestakova MV, Vikulova OK, Zheleznyakova AV, Isakov MА. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Diabetes Mellitus. 2021;24(3):204–221. (In Russ.) https://doi.org/10.14341/DM12759.

3. Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastaba H et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2.

4. Wilding JP. The importance of weight management in type 2 diabetes mellitus. Int J Clin Pract. 2014;68(6):682–691. https://doi.org/10.1111/ijcp.12384.

5. Salukhov VV, Shustov SB, Petrankov KV. Advantages of combined use of sodium-glucose co-transporter type 2 inhibitors and glucagon-like peptide-1 receptor agonists relatively to cardiovascular and renal outcomes in patients with type 2 diabetes mellitus. Therapy. 2024;10(8):66–76. (In Russ.) https://doi.org/10.18565/therapy.2024.8.66-76.

6. Hedrington MS, Tsiskarishvili A, Davis SN. Subcutaneous semaglutide (NN9535) for the treatment of type 2 diabetes. Expert Opin Biol Ther. 2018;18(3):343–351. https://doi.org/10.1080/14712598.2018.1439014.

7. Kapitza C, Dahl K, Jacobsen JB, Axelsen MB, Flint A. Effects of semaglutide on beta cell function and glycaemic control in participants with type 2 diabetes: a randomised, double-blind, placebo-controlled trial. Diabetologia. 2017;60(8):1390–1399. https://doi.org/10.1007/s00125-017-4289-0.

8. Sfairopoulos D, Liatis S, Tigas S, Liberopoulos E. Clinical pharmacology of glucagon-like peptide-1 receptor agonists. Hormones. 2018;17(3):333–350. https://doi.org/10.1007/s42000-018-0038-0.

9. Galstyan GR, Karataeva EA, Yudovich EA. Evolution of glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes. Diabetes Mellitus. 2017;20(4):286–298. (In Russ.) https://doi.org/10.14341/DM8804.

10. Blundell J, Finlayson G, Axelsen M, Flint A, Gibbons C, Kvist T, Hjerpsted J. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab. 2017;19(9):1242–1251. https://doi.org/10.1111/dom.12932.

11. Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753–2786. https://doi.org/10.2337/dci22-0034.

12. Salukhov VV, Galstyan GR, Khalimov IuSh, Bakulin IG, Cherkashin DV, Shadrichev FE, Sukhotskaia NA. Practical application of semaglutide: From evidence-based research to expert decisions. Meditsinskiy Sovet. 2025;19(6):14–29. (In Russ.) https://doi.org/10.21518/ms2025-185.

13. Szekeres Z, Nagy A, Jahner K, Szabados E. Impact of Selected Glucagon-like Peptide-1 Receptor Agonists on Serum Lipids, Adipose Tissue, and Muscle Metabolism – A Narrative Review. Int J Mol Sci. 2024;25(15):8214. https://doi.org/10.3390/ijms25158214.

14. Khalimov YuS, Kuzmich VG. Organoprotective effects of glucagon-like peptide-1 receptor agonists with regard to findings of evidence-based cardiovascular safety studies. Meditsinskiy Sovet. 2019;(21):189–197. (In Russ.) https://doi.org/10.21518/2079-701X-2019-21-189-197.

15. El Miedany Y. Bone Health in Women. In: El Miedany Y (ed.). New Horizons in Osteoporosis Management. Cham: Springer; 2022, Vol. 1, pp. 143–169. https://doi.org/10.1007/978-3-030-87950-1_4.

16. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N Engl J Med. 2021;384(11):989–1002. https://doi.org/10.1056/NEJMoa2032183.

17. Salukhov VV, Ilyinskaya TA, Minakov AA. Influence of modern antidiabetic therapy on body weight in patients with type 2 diabetes mellitus. Endocrinology: News, Opinions, Training. 2022;11(1):39–52. (In Russ.) https://doi.org/10.33029/2304-9529-2022-11-1-39-52.

18. Beavers KM, Lyles MF, Davis CC, Wang X, Beavers DP, Nicklas BJ. Is lost lean mass from intentional weight loss recovered during weight regain in postmenopausal women? Am J Clin Nutr. 2011;94(3):767–774. https://doi.org/10.3945/ajcn.110.004895.

19. Rennie MJ, Tipton KD. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr. 2000;20:457–483. https://doi.org/10.1146/annurev.nutr.20.1.457.

20. Ferrannini E, Bjorkman O, Reichard GA Jr, Pilo A, Olsson M, Wahren J, DeFronzo RA. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 1985;34(6):580–588. https://doi.org/10.2337/diab.34.6.580.

21. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab. 2011;96(9):2898–2903. https://doi.org/10.1210/jc.2011-0435.

22. Spira D, Buchmann N, Nikolov J, Demuth I, Steinhagen-Thiessen E, Eckardt R, Norman K. Association of Low Lean Mass With Frailty and Physical Performance: A Comparison Between Two Operational Definitions of Sarcopenia-Data From the Berlin Aging Study II (BASE-II). J Gerontol A Biol Sci Med Sci. 2015;70(6):779–784. https://doi.org/10.1093/gerona/glu246.

23. Santamaría-Ulloa C, Lehning AJ, Cortés-Ortiz MV, Méndez-Chacón E. Frailty as a predictor of mortality: a comparative cohort study of older adults in Costa Rica and the United States. BMC Public Health. 2023;23(1):1960. https://doi.org/10.1186/s12889-023-16900-4.

24. Frost M, Nielsen TL, Brixen K, Andersen M. Peak muscle mass in young men and sarcopenia in the ageing male. Osteoporos Int. 2015;26(2):749–756. https://doi.org/10.1007/s00198-014-2960-6.

25. Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32(11):1993–1997. https://doi.org/10.2337/dc09-0264.

26. Cava E, Yeat NC, Mittendorfer B. Preserving Healthy Muscle during Weight Loss. Adv Nutr. 2017;8(3):511–519. https://doi.org/10.3945/an.116.014506.

27. Christoffersen BØ, Sanchez-Delgado G, John LM, Ryan DH, Raun K, Ravussin E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity. 2022;30(4):841–857. https://doi.org/10.1002/oby.23374.

28. Bosy-Westphal A, Kossel E, Goele K, Later W, Hitze B, Settler U et al. Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr. 2009;90(4):993–1001. https://doi.org/10.3945/ajcn.2008.27402.

29. Jang SY, Choi KM. Impact of Adipose Tissue and Lipids on Skeletal Muscle in Sarcopenia. J Cachexia Sarcopenia Muscle. 2025;16(4):e70000. https://doi.org/10.1002/jcsm.70000.

30. Choi SJ, Files DC, Zhang T, Wang ZM, Messi ML, Gregory H et al. Intramyocellular Lipid and Impaired Myofiber Contraction in Normal Weight and Obese Older Adults. J Gerontol A Biol Sci Med Sci. 2016;71(4):557–564. https://doi.org/10.1093/gerona/glv169.

31. Damluji AA, Alfaraidhy M, AlHajri N, Rohant NN, Kumar M, Al Malouf C et al. Sarcopenia and Cardiovascular Diseases. Circulation. 2023;147(20):1534–1553. https://doi.org/10.1161/CIRCULATIONAHA.123.064071.

32. Stefan N, Schulze MB. Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment. Lancet Diabetes Endocrinol. 2023;11(6):426–440. https://doi.org/10.1016/S2213-8587(23)00086-4.

33. Perkisas S, Vandewoude M. Where frailty meets diabetes. Diabetes Metab Res Rev. 2016;32(Suppl. 1):261–267. https://doi.org/10.1002/dmrr.2743.

34. Fülster S, Tacke M, Sandek A, Ebner N, Tschöpe C, Doehner W et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34(7):512–519. https://doi.org/10.1093/eurheartj/ehs381.

35. Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J Am Geriatr Soc. 2020;68(7):1410–1418. https://doi.org/10.1111/jgs.16372.

36. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.

37. Balakrishnan R, Thurmond DC. Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. Int J Mol Sci. 2022;23(9):4636. https://doi.org/10.3390/ijms23094636.

38. Iglesias P. Muscle in Endocrinology: From Skeletal Muscle Hormone Regulation to Myokine Secretion and Its Implications in EndocrineMetabolic Diseases. J Clin Med. 2025;14(13):4490. https://doi.org/10.3390/jcm14134490.

39. Linge J, Heymsfield SB, Dahlqvist Leinhard O. On the Definition of Sarcopenia in the Presence of Aging and Obesity-Initial Results from UK Biobank. J Gerontol A Biol Sci Med Sci. 2020;75(7):1309–1316. https://doi.org/10.1093/gerona/glz229.

40. Linge J, Nasr P, Sanyal AJ, Dahlqvist Leinhard O, Ekstedt M. Adverse muscle composition is a significant risk factor for all-cause mortality in NAFLD. JHEP Rep. 2022;5(3):100663. https://doi.org/10.1016/j.jhepr.2022.100663.

41. Erokhina AS, Golovanova ED, Miloserdov MA. Ultrasound assessment of muscle mass in the diagnosis of sarcopenia in cardiovascular patients. Cardiovascular Therapy and Prevention (Russian Federation). 2021;20(3):2699. (In Russ.) https://doi.org/10.15829/1728-8800-2021-2699.

42. Dahlqvist JR, Widholm P, Leinhard OD, Vissing J. MRI in Neuromuscular Diseases: An Emerging Diagnostic Tool and Biomarker for Prognosis and Efficacy. Ann Neurol. 2020;88(4):669–681. https://doi.org/10.1002/ana.25804.

43. Widholm P, Ahlgren A, Karlsson M, Romu T, Tawil R, Wagner KR et al. Quantitative muscle analysis in facioscapulohumeral muscular dystrophy using whole-body fat-referenced MRI: Protocol development, multicenter feasibility, and repeatability. Muscle Nerve. 2022;66(2):183–192. https://doi.org/10.1002/mus.27638.

44. Correa-de-Araujo R, Addison O, Miljkovic I, Goodpaster BH, Bergman BC, Clark RV et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front Physiol. 2020;11:963. https://doi.org/10.3389/fphys.2020.00963.

45. Loosen SH, Schulze-Hagen M, Püngel T, Bündgens L, Wirtz T, Kather JN et al. Skeletal Muscle Composition Predicts Outcome in Critically Ill Patients. Crit Care Explor. 2020;2(8):e0171. https://doi.org/10.1097/CCE.0000000000000171.

46. McCrimmon RJ, Catarig AM, Frias JP, Lausvig NL, le Roux CW, Thielke D, Lingvay I. Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition in type 2 diabetes: a substudy of the SUSTAIN 8 randomised controlled clinical trial. Diabetologia. 2020;63(3):473–485. https://doi.org/10.1007/s00125-019-05065-8.

47. Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B et al. Tirzepatide Once Weekly for the Treatment of Obesity. N Engl J Med. 2022;387(3):205–216. https://doi.org/10.1056/NEJMoa2206038.

48. Sattar N, Neeland IJ, Dahlqvist Leinhard O, Fernández Landó L, Bray R, Linge J, Rodriguez A. Tirzepatide and muscle composition changes in people with type 2 diabetes (SURPASS-3 MRI): a post-hoc analysis of a randomised, open-label, parallel-group, phase 3 trial. Lancet Diabetes Endocrinol. 2025;13(6):482–493. https://doi.org/10.1016/S2213-8587(25)00027-0.

49. Ceasovschih A, Asaftei A, Lupo MG, Kotlyarov S, Bartušková H, Balta A et al. Glucagon-like peptide-1 receptor agonists and muscle mass effects. Pharmacol Res. 2025;220:107927. https://doi.org/10.1016/j.phrs.2025.107927.

50. Alissou M, Demangeat T, Folope V, Van H, Lelandais H, Blanchemaison J et al. Impact of semaglutide on fat mass, lean mass and muscle function in patients with obesity: The SEMALEAN study. Diabetes Obes Metab. 2025;1–10. https://doi.org/10.1111/dom.70141.

51. Anyiam O, Ardavani A, Rashid RSA, Panesar A, Idris I. How do glucagon-like Peptide-1 receptor agonists affect measures of muscle mass in individuals with, and without, type 2 diabetes: A systematic review and meta-analysis. Obes Rev. 2025;26(7):e13916. https://doi.org/10.1111/obr.13916.

52. Leidy HJ, Carnell NS, Mattes RD, Campbell WW. Higher protein intake preserves lean mass and satiety with weight loss in pre-obese and obese women. Obesity. 2007;15(2):421–429. https://doi.org/10.1038/oby.2007.531.

53. Kim JE, O’Connor LE, Sands LP, Slebodnik MB, Campbell WW. Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis. Nutr Rev. 2016;74(3):210–224. https://doi.org/10.1093/nutrit/nuv065.

54. Nadolsky K, Garvey WT, Agarwal M, Bonnecaze A, Burguera B, Chaplin MD et al. American Association of Clinical Endocrinology Consensus Statement: Algorithm for the Evaluation and Treatment of Adults with Obesity/Adiposity-Based Chronic Disease – 2025 Update. Endocr Pract. 2025;31(11):1351–1394. https://doi.org/10.1016/j.eprac.2025.07.017.

55. Weinheimer EM, Sands LP, Campbell WW. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. Nutr Rev. 2010;68(7):375–388. https://doi.org/10.1111/j.1753-4887.2010.00298.x.

56. Chen AS, Batsis JA. Treating Sarcopenic Obesity in the Era of Incretin Therapies: Perspectives and Challenges. Diabetes. 2025:dbi250004. https://doi.org/10.2337/dbi25-0004.


Review

For citations:


Salukhov VV, Shustov SB, Petrankov KV. The impact of semaglutide and tirzepatide on skeletal muscle: Significant benefit or substantial risk? Meditsinskiy sovet = Medical Council. 2025;(16):195–206. (In Russ.) https://doi.org/10.21518/ms2025-467

Views: 581

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)