Preview

Meditsinskiy sovet = Medical Council

Advanced search

Opportunities and limitations of physical therapy methods in the comprehensive management of diabetic angiopathy

https://doi.org/10.21518/ms2025-433

Abstract

The present article provides a comprehensive analysis of the current epidemiology, pathogenesis, diagnostics, and therapeutic approaches for lower extremity macroangiopathies in patients with type 2 diabetes mellitus (DM). DM represents a significant medical and social challenge due to its high prevalence, continuing global growth, chronic progressive nature with cumulative complications, substantial rates of disability, and the associated demand for a specialized system of care. It is noted that the prevalence of DM type 2 and its macrovascular complications, including peripheral arterial atherosclerosis and ischemic heart disease, continues to rise, significantly impacting mortality and patients’ quality of life. The global number of adult patients with diabetes has exceeded 800 million, with up to 50% of them being of working age. Macroangiopathies markedly increase the risk of cardiovascular events and peripheral blood flow disorders. The pathogenesis of these microangiopathies is primarily driven by insulin resistance, chronic hyperglycemia, and specific forms of diabetic dyslipidemia. Clinical diagnosis of macroangiopathies is based on a comprehensive assessment of symptoms, physical examination, and instrumental methods. Treatment prioritizes risk factor modification, pharmacotherapy, as well as non-pharmacological approaches including physical therapy modalities. Promising techniques such as laser therapy, low-frequency electrical stimulation, and vacuum therapy are highlighted for their role in improving microcirculation. The authors emphasize that a multifactorial strategy, integrating modern pharmacological and physical methods alongside regular clinical monitoring, forms the foundation for effective rehabilitation and prevention of severe vascular complications in patients with DM.

About the Authors

M. A. Simonyan
National Medical Research Center of Rehabilitation and Balneology
Россия

Mariam A. Simonyan, Junior Research Fellow, Department of Neurorehabilitation and Clinical Psychology

32, Novyy Arbat St., Moscow, 121099, Russia 



V. A. Vasileva
National Medical Research Center of Rehabilitation and Balneology
Россия

Valeriia A. Vasileva, Cand. Sci. (Med.), Senior Researcher, Somatic Rehabilitation, Active Longevity and Reproductive Health Department

32, Novyy Arbat St., Moscow, 121099, Russia 



L. A. Marchenkova
National Medical Research Center of Rehabilitation and Balneology
Россия

Larisa A. Marchenkova, Dr. Sci. (Med.), Head of Research Department, Head of Somatic Leading Researcher Rehabilitation, Active Longevity and Reproductive Health Department 

32, Novyy Arbat St., Moscow, 121099, Russia 



A. A. Kuzyukova
National Medical Research Center of Rehabilitation and Balneology
Россия

Anna A. Kuzyukova, Cand. Sci. (Med.), Leading Researcher, Head of the Department of Neurorehabilitation and Clinical Psychology

32, Novyy Arbat St., Moscow, 121099, Russia 



V. A. Kiyatkin
National Medical Research Center of Rehabilitation and Balneology
Россия

Vladimir A. Kiyatkin, Cand. Sci. (Med.), Associate Professor, Leading Researcher of the Department of Somatic Rehabilitation, Reproductive Health and Active Longevity 

32, Novyy Arbat St., Moscow, 121099, Russia 



References

1. Dedov II, Shestakova MV, Vikulova OK, Zheleznyakova AV, Isakov MA, Sazonova DV, Mokrysheva NG. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes Mellitus. 2023;26(2):104–123. (In Russ.) https://doi.org/10.14341/DM13035.

2. Bin Z, Archie WR, Edward WG, Kate ES, Rodrigo MC, James EB et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. ancet. 2024;404(10467):2077–2093. https://doi.org/10.1016/S0140-6736(24)02317-1.

3. Савельева ВА. Влияние длительности заболевания сахарным диабетом второго типа на развитие осложнений. В: Маскевич СА (ред.). Сахаровские чтения 2018 года: экологические проблемы XXI века: материалы конференции. Республика Беларусь, Минск, 17–18 мая 2018 г. Минск: ИВЦ Минфина; 2018. Ч. 2. C. 326–327. Режим доступа: http://aquacultura.org/upload/files/pdf/biblio/crustacea/Голубев_2018.pdf.

4. Demidova TY, Zenina SG. Molecular genetic features of the diabetes mellitus development and the possibility of precision therapy. Diabetes Mellitus. 2020;23(5):467–474. (In Russ.) https://doi.org/10.14341/DM12486.

5. Barrera EFX, Szeto A, Mendez AJ, Garg R, Goldberg RB. The nature and characteristics of hypertriglyceridemia in a large cohort with type 2 diabetes. J Diabetes Complications. 2023;37(2):108387. https://doi.org/10.1016/j.jdiacomp.2022.108387.

6. Karakasis P, Theofilis P, Patoulias D, Vlachakis PK, Antoniadis AP, Fragakis N. Diabetes-Driven Atherosclerosis: Updated Mechanistic Insights and Novel Therapeutic Strategies. Int J Mol Sci. 2025;26(5):2196. https://doi.org/10.3390/ijms26052196.

7. Haddad JA, Annabi FOA, Abbasi H, AlSamen MAA, Ammari FL, Haddad FH. The Prevalence of Atherosclerotic Cardiovascular Disease in Patients with Type 2 Diabetes in Jordan: The PACT-MEA Study. Diabetes Ther. 2025;16(5):899–913. https://doi.org/10.1007/s13300-025-01718-7.

8. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83. https://doi.org/10.1186/s12933-018-0728-6.

9. Gyldenkerne C, Olesen KKW, Thrane PG, Hansen MK, StødkildeJørgensen N, Sørensen HT et al. Trends in Peripheral Artery Disease, LowerExtremity Revascularization, and Lower-Extremity Amputation in Incident Type 2 Diabetes: A Danish Population-Based Cohort Study. Diabetes Care. 2025;48(1):76–83.

10. Boulton A, Connor H, Cavanagh P. The foot in diabetes 3rd ed. Wiley&Sons; 2000. 372 p. https://doi.org/10.1002/dmrr.833.

11. Minakov OE, Andreev AA, Ostroushko AP. The Diabetic Foot Syndrome. Journal of Experimental and Clinical Surgery. 2017;10(2):165–172. (In Russ.) https://doi.org/10.18499/2070-478X-2017-10-2-165-172.

12. Yotsu RR, Pham NM, Oe M, Nagase T, Sanada H, Hara H, et al. Comparison of characteristics and healing course of diabetic foot ulcers by etiological classification: neuropathic, ischemic, and neuro-ischemic type. J Diabetes Complications. 2014;28(4):528–535. https://doi.org/10.1016/j.jdiacomp.2014.03.013.

13. Kajikawa M, Maruhashi T, Iwamoto Y, Iwamoto A, Matsumoto T, Hidaka T et al. Borderline ankle-brachial index value of 0.91-0.99 is associated with endothelial dysfunction. Circ J. 2014;78(7):1740–1745. https://doi.org/10.1253/circj.cj-14-0165.

14. Shirai K, Utino J, Otsuka K, Takata M. A novel blood pressureindependent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb. 2006;13(2):101–107. https://doi.org/10.5551/jat.13.101.

15. Namba T, Masaki N, Takase B, Adachi T. Arterial Stiffness Assessed by Cardio-Ankle Vascular Index. Int J Mol Sci. 2019;20(15):3664. https://doi.org/10.3390/ijms2015366.

16. Niwa H, Takahashi K, Dannoura M, Oomori K, Miyoshi A, Inada T et al. The Association of Cardio-Ankle Vascular Index and Ankle-Brachial Index with Macroangiopathy in Patients with Type 2 Diabetes Mellitus. J Atheroscler Thromb. 2019;26(7):616–623. https://doi.org/10.5551/jat.45674.

17. Kajikawa M, Maruhashi T, Iwamoto Y, Iwamoto A, Matsumoto T, Hidaka T et al. Borderline ankle-brachial index value of 0.91-0.99 is associated with endothelial dysfunction. Circ J. 2014;78(7):1740–1745. https://doi.org/10.1253/circj.cj-14-0165.

18. Nosov AE, Gorbushina OY, Vlasova EM, Alekseev VB. Prognostic significance of arterial stiffness parameters in the identification of very high-risk patients. Kardiologiya. 2020;60(10):27–32. (In Russ.) https://doi.org/10.18087/cardio.2020.10.n.1239.

19. Ghimire MR, Acharya S, Pandey S, Aryal D, Shah P, Soti B, et al. Screening of Peripheral Arterial Disease in Patients with Diabetes. J Nepal Health Res Counc. 2023;21(1):46–49. https://doi.org/10.33314/jnhrc.v21i1.4402.

20. Akalu Y, Birhan A. Peripheral Arterial Disease and Its Associated Factors among Type 2 Diabetes Mellitus Patients at Debre Tabor General Hospital, Northwest Ethiopia. J Diabetes Res. 2020;2020:9419413. https://doi.org/10.1155/2020/9419413.

21. Song Y, Zhang Y, Zhang Y, Hu B. Two-dimensional ultrasound and twodimensional shear wave elastography on femoral and saphenous neuropathy in patients with type 2 diabetes mellitus. Front Neurol. 2022;13:996199. https://doi.org/10.3389/fneur.2022.996199.

22. Tall S, Prahalad P, Adiels M, Rosengren A, Virtanen SM, Maahs DM, Knip M. Increased Risk of Type 1 Diabetes in Boys Under the Age of 5 Years During COVID-19 Lockdowns in Finland, Sweden and Stanford, CA, USA-An Observational Multicenter Study. Diabetes Metab Res Rev. 2025;41(6):e70084. https://doi.org/10.1002/dmrr.70084.

23. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):41. https://doi.org/10.1038/s41572-019-0092-1.

24. Shemyakina NA. To the question of diagnostics and ways of correction of the diabetic macrovascular disease of the lower extremities in patients with type 2 diabetes mellitus. Acta Biomedica Scientifica. 2023;26(2S):1–157. (In Russ.) https://doi.org/10.12737/article_5a0a8ee3048e76.65175111.

25. Dedov I, Shestakova M, Mayorov A, Mokrysheva N, Andreeva E, Bezlepkina O et al. Standards of Specialized Diabetes Care. Diabetes Mellitus. 2023;26(2 Suppl.):1–157. (In Russ.) https://doi.org/10.14341/DM13042.

26. Demidova TY. Vascular complications of type 2 diabetes mellitus beyond the reach of glycemic control. Diabetes Mellitus. 2010;13(3):111–116. (In Russ.) https://doi.org/10.14341/2072-0351-5498.

27. Christian JB, Bourgeois N, Snipes R, Lowe KA. Prevalence of severe (500 to 2,000 mg/dl) hypertriglyceridemia in United States adults. Am J Cardiol. 2011;107(6):891–897. https://doi.org/10.1016/j.amjcard.2010.11.008.

28. Temelkova-Kurktschiev T, Hanefeld M. The lipid triad in type 2 diabetes – prevalence and relevance of hypertriglyceridaemia/low high-density lipoprotein syndrome in type 2 diabetes. Exp Clin Endocrinol Diabetes. 2004;112(2):75–79. https://doi.org/10.1055/s-2004-815753.

29. Глебова АР, Батрак ГА. Особенности макроангиопатии нижних конечностей у пациентов сахарным диабетом 1-го и 2-го типа. В: Томилова ИК (ред.). Медико-биологические, клинические и социальные вопросы здоровья и патологии человека: сборник трудов конференции. Иваново, 7–8 апреля 2020 г. Иваново: Ивановская государственная медицинская академия; 2020. C. 319–321. Режим доступа: https://elibrary.ru/vbascd.

30. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-Reactive protein in risk assessment. Am J Med. 2004;116:9–16. https://doi.org/10.1016/j.amjmed.2004.02.006.

31. Oliveira GH. Novel serologic markers of cardiovascular risk. Curr Atheroscler Rep. 2005;7(2):148–154. https://doi.org/10.1007/s11883-005-0038-9

32. Berg MJ, Graaf Y, Deckers JW, Kanter W, Algra A, Kappelle LJ et al. SMART study group. Smoking cessation and risk of recurrent cardiovascular events and mortality after a first manifestation of arterial disease. Am Heart J. 2019;213:112–122. https://doi.org/10.1016/j.ahj.2019.03.019.

33. Selvarajah S, Black JH, Malas MB, Lum YW, Propper BW, Abularrage CJ. Preoperative smoking is associated with early graft failure after infrainguinal bypass surgery. J Vasc Surg. 2014;59(5):1308–1314. https://doi.org/10.1016/j.jvs.2013.12.011.

34. Bohnert KL. Remote Research and Needs in People with Diabetes and Neuropathy. J Diabetes Sci Technol. 2023;(1):52–58. https://doi.org/10.1177/19322968221103610.

35. Sorrentino S, Landmesser U. Nonlipid-lowering effects of statins. Curr Treat Options Cardiovasc Med. 2005;7(6):459–466. https://doi.org/10.1007/s11936-005-0031-1.

36. Naaman SC. Update on Pillars of Therapy in Diabetic Nephropathy. Diabetes Care. 2023;(9):1574–1586. https://doi.org/10.2337/dci23-0030.

37. Anisimov SV, Kozlov AV. Modern approaches in the treatment of occlusive restenosis of the arteries of the lower extremities. Case report. Cardiovascular Therapy and Prevention. 2023;22(7S):3635. (In Russ.) https://doi.org/10.15829/1728-8800-2023-3635.

38. Kazantsev V, Korymasov EA. Choosing the method of treatment of oblitering atherosclerosis arteries of lower limbs based on prediction of the disease. Surgical Practice (Russia). 2017;(1):33–37. (In Russ.) Available at: https://www.spractice.ru/jour/article/view/47/47.

39. Сlinical Practice Guidelines. European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Asymptomatic Lower Limb Peripheral Arterial Disease and Intermittent Claudication. Eur J Vasc Endovasc Surg. 2024;67(1):9–96. https://doi.org/10.1016/j.ejvs.2023.08.067.

40. Lackland DT, Weber MA. Global burden of cardiovascular disease and stroke: hypertension at the core. Can J Cardiol. 2015;31(5):569–571. https://doi.org/10.1016/j.cjca.2015.01.009.

41. Pearce L, Ghosh J, Counsell A, Serracino-Inglott F. Cilostazol and peripheral arterial disease. Expert Opin Pharmacother. 2008;9(15):2683–2690. https://doi.org/10.1517/14656566.9.15.2683.

42. Litchman ML. Using patient-generated health data from mobile technologies for diabetes self-management support. J Diabetes Sci Technol. 2021;15(2):415–420. https://doi.org/10.1177/1932296813511727.

43. Fisher EB. Peer support in diabetes self-management: evidence from clinical trials. Family Practice. 2017;34(3):284–290. https://doi.org/10.1377/hlthaff.2011.0914.

44. Coccheri S, Mannello F. Development and use of sulodexide in vascular diseases: implications for treatment. Drug Des Devel Ther. 2013;8:49–65. https://doi.org/10.2147/DDDT.S6762.

45. Kontopodis N, Tavlas E, Papadopoulos G, Pantidis D, Kafetzakis A, Chalkiadakis G, Ioannou C. Effectiveness of platelet-rich plasma to enhance healing of diabetic foot ulcers in patients with concomitant peripheral arterial disease and critical limb ischemia. Int J Low Extrem Wounds. 2016;15(1):45–51. https://doi.org/10.1177/1534734615575829.

46. Suchkov IA, Kalinin RE, Mzhavanadze ND, Kamaev AA, Burenin AG, Larkov RN. Efficacy and safety of a vascular regulatory polypeptide-based drug for the treatment of intermittent claudication: results of a multicenter, double-blind, placebo-controlled randomized trial. Angiology and Vascular Surgery. 2023;29(1):23–33. (In Russ.) Available at: https://www.angiolsurgery.org/magazine/2023/1.

47. Bayliss EA. Multimorbidity and quality of life in adults with type 2 diabetes. Health Qual Life Outcomes. 2014;12:85. https://doi.org/10.4239/wjd.v8.i4.120.

48. Ivy JL. Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports Med. 1997;24(5):321–336. https://doi.org/10.2165/00007256-199724050-00004.

49. Garber AJ, Handelsman Y, Grunberger G, Einhorn D, Abrahamson MJ, Barzilay JI et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm – 2020 Executive Summary. Endocr Pract. 2020;26(1):107–139. https://doi.org/10.4158/cs-2019-0472.

50. Magkos F, Tsekouras Y, Kavouras S, Mittendorfer B, Sidossis LS. Improved insulin sensitivity after a single bout of exercise is curvilinearly related to exercise energy expenditure. Clinical Science. 2008;114(1):59–64. https://doi.org/10.1042/CS20070134.

51. Signori LU, Rubin Neto LJ, Jaenisch RB, Puntel GO, Nunes GS, Paulitsch FS et al. Effects of therapeutic ultrasound on the endothelial function of patients with type 2 diabetes mellitus. Braz J Med Biol Res. 2023;56:e12576. https://doi.org/10.1590/1414-431X2023e12576.

52. Khalsa B, Archie M, Nazer B, Razavi MK. Noninvasive therapeutic ultrasound to increase perfusion in chronic limb-threatening ischemia: An early feasibility study. Vasc Med. 2025;30(1):20–26. https://doi.org/10.1177/1358863X241305093.

53. Kovaleva TV. Laser therapy of diabetics with dyslipemia. Problemy Endokrinologii. 2002;48(1):13–17. (In Russ.) https://doi.org/10.14341/probl11426.

54. Deng YX, Wang XC, Xia ZY, Wan MY, Jiang DY. Efficacy and safety of negative pressure wound therapy for the treatment of diabetic foot ulcers: A metaanalysis. World J Diabetes. 2025;16(6):103520. https://doi.org/10.4239/wjd.v16.i6.103520.

55. Ren W, Duan Y, Jan YK, Li J, Liu W, Pu F, Fan Y. Effect of intermittent pneumatic compression with different inflation pressures on the distal microvascular responses of the foot in people with type 2 diabetes mellitus. Int Wound J. 2022;19(5):968–977. https://doi.org/10.1111/iwj.13693.

56. Delis KT, Labropoulos N, Nicolaides AN, Glenville B, Stansby G. Effect of intermittent pneumatic foot compression on popliteal artery haemodynamics. Eur J Vasc Endovasc Surg. 2000;19(3):270–277. https://doi.org/10.1053/ejvs.1999.1028.

57. Zuj KA, Prince CN, Hughson RL, Peterson SD. Enhanced muscle blood flow with intermittent pneumatic compression of the lower leg during plantar flexion exercise and recovery. J Appl Physiol. 2018;124(2):302–311. https://doi.org/10.1152/japplphysiol.00784.2017

58. Labropoulos N, Wierks C, Suffoletto B. Intermittent pneumatic compression for the treatment of lower extremity arterial disease: a systematic review. Vasc Med. 2002;7(2):141–148. https://doi.org/10.1191/1358863x02vm423oa.

59. Baklushina EA, Yastrebtsova IP. The application of electrical myostimulation for the purpose of neuro-rehabilitation. Russian Journal of Physiotherapy, Balneology and Rehabilitation. 2016;15(1):49–54. (In Russ.) https://doi.org/10.18821/1681-3456-2016-15-1-49-54.

60. Babber A, Ravikumar R, Onida L, Lane TRA, Davies AH. Effect of footplate neuromuscular electrical stimulation on functional and quality-of-life parameters in patients with peripheral artery disease: pilot, and subsequent randomized clinical trial. Br J Surg. 2020;107(4):355–363. https://doi.org/10.1002/bjs.11398.

61. Burgess L, Smith S, Babber A, Shalhoub J, Fiorentino F, de la Rosa CN et al. Neuromuscular electrical stimulation as an adjunct to standard care in improving walking distances in intermittent claudication patients: the NESIC RCT. Southampton (UK): National Institute for Health and Care Research; 2023. https://doi.org/10.3310/WGRF4128.

62. Gomes Neto M, Oliveira FA, Reis HF, de Sousa Rodrigues- E Jr, Bittencourt HS, Oliveira Carvalho V. Effects of neuromuscular electrical stimulation on physiologic and functional measurements in patients with heart failure: A systematic review with meta-analysis. J Cardiopulm Rehabil Prev. 2016;36(3):157–166. https://doi.org/10.1097/hcr.0000000000000151.

63. Smith A, Brown C, Jones D, Smith S, Rosa CN , Fiorentino F et al. Neuromuscular electrical stimulation in patients with intermittent claudication: a multicenter randomized controlled trial (NESIC). Eur J Vasc Endovasc Surg. 2023;65(1):88–96. https://doi.org/10.1016/j.ejvs.2022.08.012.

64. Mahdi AA, Mahmoud RR. An eight-week pulsed electromagnetic field improves physical functional performance and ankle-brachial index in men with Fontaine stage II peripheral artery disease. Adv Rehabil. 2021;35(4):1–8. https://doi.org/10.5114/areh.2021.109710.


Review

For citations:


Simonyan MA, Vasileva VA, Marchenkova LA, Kuzyukova AA, Kiyatkin VA. Opportunities and limitations of physical therapy methods in the comprehensive management of diabetic angiopathy. Meditsinskiy sovet = Medical Council. 2025;(16):208–219. (In Russ.) https://doi.org/10.21518/ms2025-433

Views: 96

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)