Post-COVID-19 as a risk factor for development and progression of bronchial asthma
https://doi.org/10.21518/ms2025-494
Abstract
Bronchial asthma (BA) is one of the most common chronic respiratory diseases worldwide. In Russia, the prevalence of asthma among the adult population is 6.9%.Its pathogenesis is associated with a complex interaction of genetic, environmental, and immune factors, among which acute respiratory viral infections play a significant role. These pathogens can damage the airway epithelium, triggering chronic inflammation and inducing a Th2immune response with hyperproduction of interleukin (IL) 4, IL-5, and IL-13. The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has highlighted the long-term consequences of the infection, including the risk of developing new cases of asthma and worsening existing asthma. Virus-induced airway inflammation mediated by type 2 immune mechanisms (T2 inflammation) may play a key role in the pathogenesis of asthma in the post-COVID-19 period. In support of this hypothesis, recent retrospective studies have shown that in adult patients, the risk of asthma exacerbations requiring enhanced maintenance therapy may persist for an average of 6–14 months after COVID-19. These findings suggest that a significant proportion of asthma patients may experience loss of asthma control after COVID-19, which may lead to an increased long-term risk of severe exacerbations (requiring hospitalization) and mortality. Currently, data on the long-term effects of SARS-CoV-2 on immune pathways regulating T2 inflammation, the role of IL-13 in the persistence of post-COVID-19 respiratory symptoms, the effectiveness of biological therapies (e.g., anti-IL-13/IL-4) for preventing asthma after COVID-19, and the impact of COVID-19 on the long-term risk of severe exacerbations and mortality are insufficient. This review integrates the results of molecular, immunological, and clinical studies, offering a comprehensive perspective.
About the Authors
V. V. GaynitdinovaRussian Federation
Viliya V. Gaynitdinova, Dr. Sci. (Med.), Professor of Department of Pulmonology, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
E. S. Sokolova
Russian Federation
Elizaveta S. Sokolova, Resident of Physician Department of Pulmonology, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
S. N. Avdeev
Russian Federation
Sergey N. Avdeev, Acad. RAS, Dr. Sci. (Med.), Professor, Head of the Department of Pulmonology, Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University);Leading Researcher, Research Institute for Pulmonology of the Federal Medical Biological Agency
8, Bldg. 2, Trubetskaya St., Moscow, 119991;
28, Orekhovy Boulevard, Moscow, 115682
Huixin Wang
Russian Federation
Huixin Wang, Student, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
References
1. Chuchalin AG, Avdeev SN, Aisanov ZR, Belevskiy AS, Vasil’eva OS, Geppe NA et al. Federal guidelines on diagnosis and treatment of bronchial asthma. Pulmonologiya. 2022;32(3):393–447. (In Russ.) https://doi.org/10.18093/0869-0189-2022-32-3-393-447.
2. Rantala A, Jaakkola JK, Jaakkola MS. Respiratory Infections Precede AdultOnset Asthma. PLoS ONE. 2011;6(12):e27912. https://doi.org/10.1371/journal.pone.0027912.
3. Sasson J, Moreau GB, Petri WA Jr. The role of interleukin 13 and the type 2 immune pathway in COVID-19: A review. Ann Allergy Asthma Immunol. 2024;130(6):727–732. https://doi.org/10.1016/j.anai.2023.03.012.
4. Adeloye D, Elneima O, Daines L, Poinasamy K, Quint JK, Walker S et al. The long-term sequelae of COVID-19: an international consensus on research priorities for patients with pre-existing and new-onset airways disease. Lancet Respir Med. 2021;9(12):1467–1478. https://doi.org/10.1016/S2213-2600(21)00386-5.
5. Yoon H-Y, Uh S-T. Post-coronavirus disease 2019 pulmonary fibrosis: wait or needs intervention. Tuberc Respir Dis. 2022;85:320–331. https://doi.org/10.4046/trd.2022.0008.
6. Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci. 2022;23(17):9914. https://doi.org/10.3390/ijms23179914.
7. Gemelli Against C-P-ACSG. Post-COVID-19 global health strategies: the need for an interdisciplinary approach. Aging Clin Exp Res. 2020;32:1613–1620. https://doi.org/10.1007/s40520-020-01616-x.
8. Kim BG, Lee H, Yeom SW, Jeong CY, Park DW, Park T et al. Increased Risk of New-Onset Asthma After COVID-19: A Nationwide Population-Based Cohort Study. J Allergy Clin Immunol Pract. 2024;12(1):120–132.e5. https://doi.org/10.1016/j.jaip.2023.10.042.
9. Sigurs N, Gustafsson PM, Bjarnason R, Lundberg F, Schmidt S, Sigurbergsson F et al. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am J Respir Crit Care Med. 2005;171:137–141. https://doi.org/10.1164/rccm.200406-730OC.
10. Busse WW, Lemanske RF Jr, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet. 2010;376:826–834. https://doi.org/10.1016/S0140-6736(10)61380-3.
11. de Nijs SB, Venekamp LN, Bel EH. Adult-onset asthma: is it really different? Eur Respir Rev. 2013;22:44–52. https://doi.org/10.1183/09059180.00007112.
12. Rubner FJ, Jackson DJ, Evans MD, Gangnon RE, Tisler CJ, Pappas TE et al. Early life rhinovirus wheezing, allergic sensitization, and asthma risk at adolescence. J Allergy Clin Immunol. 2017;139:501–507. https://doi.org/10.1016/j.jaci.2016.03.049.
13. Pech M, Weckmann M, König IR, Franke A, Heinsen FA, Oliver B et al. Rhinovirus infections change DNA methylation and mRNA expression in children with asthma. PLoS ONE. 2018;13:e0205275. https://doi.org/10.1371/journal.pone.0205275.
14. Hayashi Y, Sada M, Shirai T, Okayama K, Kimura R, Kondo M et al. Rhinovirus infection and virus-induced asthma. Viruses. 2022;14:2616. https://doi.org/10.3390/v14122616.
15. Al-Muhsen S, Johnson JR, Hamid Q. Remodeling in asthma. J Allergy Clin Immunol. 2011;128:451–462. https://doi.org/10.1016/j.jaci.2011.04.047.
16. Kim EY, Battaile JT, Patel AC, You Y, Agapov E, Grayson MH et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med. 2008;14:633–640. https://doi.org/10.1038/nm1770.
17. Moore ML, Chi MH, Luongo C, Lukacs NW, Polosukhin VV, Huckabee MM et al. A chimeric A2 strain of respiratory syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced viral load, mucus, and airway dysfunction. J Virol. 2009;83:4185–4194. https://doi.org/10.1128/JVI.01853-08.
18. Rupani H, Martinez-Nunez RT, Dennison P, Lau LC, Jayasekera N, Havelock T et al. Toll-like Receptor 7 Is Reduced in Severe Asthma and Linked to an Altered MicroRNA Profile. Am J Respir Crit Care Med. 2016;194:26–37. https://doi.org/10.1164/rccm.201502-0280OC.
19. Du X, Yang Y, Xiao G, Yang M, Yuan L, Qin L et al. Respiratory syncytial virus infection-induced mucus secretion by down-regulation of miR-34b/c-5p expression in airway epithelial cells. J Cell Mol Med. 2020;24:12694–12705. https://doi.org/10.1111/jcmm.15841.
20. Moheimani F, Koops J, Williams T, Reid AT, Hansbro PM, Wark PA et al. Influenza A virus infection dysregulates the expression of microRNA-22 and its targets; CD147 and HDAC4, in epithelium of asthmatics. Respir Res. 2018;19:145. https://doi.org/10.1186/s12931-018-0849-1.
21. Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17:704–715. https://doi.org/10.1016/j.chom.2015.03.008.
22. Teo SM, Tang HHF, Mok D, Judd LM, Watts SC, Pham K et al. Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host Microbe. 2018;24:341–352.e5. https://doi.org/10.1016/j.chom.2018.08.005.
23. Adir Y, Saliba W, Beurnier A, Humbert M. Asthma and COVID-19: an update. Eur Respir Rev. 2021;30:210152. https://doi.org/10.1183/16000617.0152-2021.
24. DeVries A, Shambhu S, Sloop S, Overhage JM. One-year adverse outcomes among US adults with post-COVID-19 condition vs those without COVID-19 in a large commercial insurance database. JAMA Health Forum. 2023;4:e230010. https://doi.org/10.1001/jamahealthforum.2023.0010.
25. Lee H, Kim BG, Chung SJ, Park DW, Park TS, Moon JY et al. New-onset asthma following COVID-19 in adults. J Allergy Clin Immunol Pract. 2023;11:228–2231. https://doi.org/10.1016/j.jaip.2023.03.010.
26. Pividori M, Schoettler N, Nicolae DL, Ober C, Im HK. Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genomewide and transcriptome-wide studies. Lancet Respir Med. 2019;7:509–522. https://doi.org/10.1016/S2213-2600(19)30055-4.
27. Busse PJ, Mathur SK. Age-related changes in immune function: effect on airway inflammation. J Allergy Clin Immunol. 2010;126:690–699. https://doi.org/10.1016/j.jaci.2010.08.007.
28. Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21:425–456. https://doi.org/10.1146/annurev.immunol.21.120601.141142.
29. Kudryavtsev IV, Golovkin AS, Totolian AA. T helper cell subsets and related target cells in acute COVID-19. Russian Journal of Infection and Immunity. 2022;12(3):409–426. (In Russ.) https://doi.org/10.15789/2220-7619-THC-1882.
30. Donlan AN, Sutherland TE, Marie C, Preissner S, Bradley BT, Carpenter RM et al. IL-13 is a driver of COVID-19 severity. JCI Insight. 2021;6(15):e150107. https://doi.org/10.1172/jci.insight.150107.
31. Gibellini L, De Biasi S, Meschiari M, Gozzi L, Paolini A, Borella R et al. Plasma cytokine atlas reveals the importance of TH2 polarization and interferons in predicting COVID-19 severity and survival. Front Immunol. 2022;13:842150. https://doi.org/10.3389/fimmu.2022.842150.
32. Carapito R, Li R, Helms J, Carapito C, Gujja S, Rolli V et al. Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort. Sci Transl Med. 2022;14(628):eabj7521. https://doi.org/10.1126/scitranslmed.abj7521.
33. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584:463–469. https://doi.org/10.1038/s41586-020-2588-y.
34. Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM et al. Large-scale multi-omic analysis of COVID-19 severity. Cell Syst. 2021;12(1):23–40.e7. https://doi.org/10.1016/j.cels.2020.10.003.
35. Thair SA, He YD, Hasin-Brumshtein Y, Sakaram S, Pandya R, Toh J et al. Transcriptomic similarities and differences in host response between SARS-CoV-2 and other viral infections. iScience. 2020;24(1):101947. https://doi.org/10.1016/j.isci.2020.101947.
36. Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe Å et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595:107–113. https://doi.org/10.1038/s41586-021-03570-8.
37. Zhang JY, Wang XM, Xing X, Xu Z, Zhang C, Song JW et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat Immunol. 2020;21:1107–1118. https://doi.org/10.1038/s41590-020-0762-x.
38. Gomez-Cadena A, Spehner L, Kroemer M, Khelil MB, Bouiller K, Verdeil G et al. Severe COVID-19 patients exhibit an ILC2 NKG2D+ population in their impaired ILC compartment. Cell Mol Immunol. 2021;18:484–486. https://doi.org/10.1038/s41423-021-00628-5.
39. Zeng HL, Chen D, Yan J, Yang Q, Han QQ, Li SS, Cheng L. Proteomic characteristics of bronchoalveolar lavage fluid in critical COVID-19 patients. FEBS J. 2021;288:5200–5210. https://doi.org/10.1111/febs.15813.
40. Vaz de Paula CB, de Azevedo MLV, Nagashima S, Jarbas da Silva MJ, Mineia Alessandra SM, Raboni SM, Pl´ınio CN. IL-4/IL-13 remodeling pathway of COVID-19 lung injury. Sci Rep. 2020;10:18689. https://doi.org/10.1038/s41598-020-75659-5.
41. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280. e8. https://doi.org/10.1016/j.cell.2020.02.052.
42. Klein J, Wood J, Jaycox J. Dysregulation of brain and choroid plexus cell types in severe COVID-19. medRxiv. 2022. https://doi.org/10.1101/2022.08.09.22278592.
43. Dinnon KH 3rd, Leist SR, Okuda K, Dang H, Fritch EJ, Gully KL et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14(664):eabo5070. https://doi.org/10.1126/scitranslmed.abo5070.
44. Lennon FE, Singleton PA. Role of hyaluronan and hyaluronan-binding proteins in lung pathobiology. Am J Physiol Lung Cell Mol Physiol. 2011;301:L137–L147. https://doi.org/10.1152/ajplung.00071.2010.
45. Hellman U, Karlsson MG, Engström-Laurent A, Cajander S, Dorofte L, Ahlm C et al. Presence of hyaluronan in lung alveoli in severe Covid-19: an opening for new treatment options? J Biol Chem. 2020;295:15418–15422. https://doi.org/10.1074/jbc.RA120.014089.
46. Virtanen A, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases. BioDrugs. 2019;33(1):15–32. https://doi.org/10.1007/s40259-019-00333-w.
47. Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW et al. AntibodyDependent SARS Coronavirus Infection is Mediated by Antibodies Against Spike Proteins. Biochem Biophys Res Commun. 2014;451(2):208–214. https://doi.org/10.1016/j.bbrc.2014.07.090.
48. Picchianti Diamanti A, Rosado MM, Nicastri E, Sesti G, Pioli C, Laganà B et al. Severe Acute Respiratory Syndrome Coronavirus-2 Infection and Autoimmunity 1 Year Later: The Era of Vaccines. Front Immunol. 2021;12:708848. https://doi.org/10.3389/fimmu.2021.708848.
49. Marone G, Granata F, Pucino V, Pecoraro A, Heffler E, Loffredo S et al. The intriguing role of interleukin 13 in the pathophysiology of asthma. Front Pharmacol. 2019;10:1387. https://doi.org/10.3389/fphar.2019.01387.
50. Santaolalla A, Bax HJ, Chauhan J, Josephs DH, Van Hemelrijck M, Karagiannis SN et al. Protective effects of allergic diseases in COVID-19 outcomes: A retrospective cohort study in UK Biobank in the general population and in patients with cancer. Clin Exp Allergy. 2024;54(4):297–299. https://doi.org/10.1111/cea.14445.
51. Broadhurst R, Peterson R, Wisnivesky JP, Federman A, Zimmer SM, Sharma S et al. Asthma in COVID-19 hospitalizations: an overestimated risk factor? Ann Am Thorac Soc. 2020;17:1645–1648. https://doi.org/10.1513/AnnalsATS.202006-613RL.
52. Kimura H, Francisco D, Conway M, Martinez FD, Vercelli D, Polverino F et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020;146:80–88. https://doi.org/10.1016/j.jaci.2020.05.004.
53. Nurek M, Rayner C, Freyer A, Taylor S, Järte L, MacDermott N et al. Recommendations for the recognition, diagnosis, and management of long COVID: a Delphi study. Br J Gen Pract. 2021;71:e815–e825. https://doi.org/10.3399/BJGP.2021.0265.
54. Agondi RC, Menechino N, Marinho AKBB, Kalil J, Giavina-Bianchi P. Worsening of asthma control after COVID-19. Front Med. 2022;9:882665. https://doi.org/10.3389/fmed.2022.882665.
55. Lee H, Kim BG, Jeong CY, Park DW, Park TS, Moon JY et al. Long-Term Impacts of COVID-19 on Severe Exacerbation and Mortality in Adult Asthma: A Nationwide Population-Based Cohort Study. J Allergy Clin Immunol Pract. 2024;12(7):1783–1793.e4. https://doi.org/10.1016/j.jaip.2024.03.025.
56. Jaswaney R, Foster K, Moore D, Andy-Nweye A, Mahdavinia M. Allergic Asthma Patients Experience Lower Rates of Asthma Exacerbation Compared to Non-Allergic Asthma Patients Following COVID-19 Infection. J Allergy Clin Immunol. 2022;149(2 Suppl.):AB58. https://doi.org/10.1016/j.jaci.2021.12.220.
57. Santaolalla A, Bax HJ, Chauhan J, Josephs DH, Van Hemelrijck M. Protective effects of allergic diseases in COVID‐19 outcomes: A retrospective cohort study in UK Biobank in the general population and in patients with cancer. Clin Exp Allergy. 2024;54(4):297–299. https://doi.org/10.1111/cea.14445.
Review
For citations:
Gaynitdinova VV, Sokolova ES, Avdeev SN, Wang H. Post-COVID-19 as a risk factor for development and progression of bronchial asthma. Meditsinskiy sovet = Medical Council. 2025;(20):63-70. (In Russ.) https://doi.org/10.21518/ms2025-494


































