Some parallels between chronic fatigue syndrome and post-COVID syndrome: The role of immune dysregulation
https://doi.org/10.21518/ms2025-510
Abstract
Introduction. The multifactorial nature of the formation of chronic fatigue syndrome after patients have suffered coronavirus infection COVID-19 or the so-called covid syndrome actualizes the need for further study of the etiopathogenetic mechanisms of the disease and improvement of rehabilitation methods.
Aim. Based on a descriptive analysis of literature sources on the formation of chronic fatigue syndrome in people who have suffered from coronavirus infection, prescriptive analytics should be performed to improve patient rehabilitation methods.
Materials and methods. The sources of descriptive analysis were the literary data of scientific databases.: Web of Science, eLIBRARY, MEDLINE, PubMed Central, Scopus. Based on the results of a chronological review of the literature, a comparison of clinical manifestations and pathogenetic hypotheses of the development of postcovoid syndrome and postinfectious phenomena with prescriptive analytics was carried out.
Results and discussion. When comparing the clinical picture of patients, more diverse symptoms of post-ovoid condition were revealed compared with chronic fatigue syndrome. Modern studies of pathogenesis have revealed similar immune mechanisms characteristic of both chronic fatigue syndrome and post-ovarian syndrome, namely, multidirectional immune dysfunction in the form of prolonged stimulation with the development of an inadequate response and autoimmune inflammation, which eventually transforms into an “immune depletion syndrome”. The similarity of the clinic of post-cystic syndrome and chronic fatigue syndrome with the initial manifestations of autoimmune diseases, the widespread occurrence of these post-infectious conditions in the population are of concern to scientists and doctors and dictate the need for further study of this problem. In addition, the possible launch of an autoimmune process with the formation of autoimmune diseases is extremely important from the point of view of assessing the long-term impact of COVID-19 on human health.
Conclusion. The obtained results of a descriptive analysis of literary sources confirm the relevance of further research into the problems of postcovoid syndrome and the need for prescriptive analytics to reduce the long-term impact of the disease on human health and prevent the development of chronic diseases.
About the Authors
D. S. VasilkovaRussian Federation
Diniya S. Vasilkova, Cand. Sci. (Med.), Associate Professor, Associate Professor of the Department of Pediatrics at the Institute of Continuing Professional Education
64 Vorovskiy St., Chelyabinsk, 454092
A. Yu. Pishchalnikov
Russian Federation
Alexander Yu. Pishchalnikov, Dr. Sci. (Med.), Professor, Head of the Department of Pediatrics at the Institute of Continuing Professional Education
64 Vorovskiy St., Chelyabinsk, 454092
O. S. Abramovskikh
Russian Federation
Olga S. Abramovskikh, Dr. Sci. (Med.), Associate Professor, Head of the Department of the Department of Clinical Laboratory Diagnostics
64 Vorovskiy St., Chelyabinsk, 454092
References
1. Komaroff AL, Lipkin WI. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol Med. 2021;27(9):895–906. https://doi.org/10.1016/j.molmed.2021.06.002.
2. Valdez AR, Hancock EE, Adebayo S, Kiernicki DJ, Proskauer D, Attewell JR et al. Estimating prevalence, demographics, and costs of ME/CFS using large scale medical claims data and machine learning. Front Pediatr. 2019;6:412. https://doi.org/10.3389/fped.2018.00412.
3. Huang L, Li X, Gu X, Zhang H, Ren L, Guo L et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022;10(9):863–876. https://doi.org/10.1016/S2213-2600(22)00126-6.
4. Kryukov EV, Zhdanov KV, Kozlov KV, Kravtsov VYu, Mal’tsev OV, Sukachev VS et аl. Electron microscopic changes in the nasal membrane of patients with COVID-19 depending on the clinical form and the period of the disease. Jurnal Infektologii. 2021;13(2):5–13. (In Russ.) https://doi.org/10.22625/2072-6732-2021-13-2-5-13.
5. Pigarova EA, Pleshcheva AV, Dzeranova LK, Rozhinskaya LYa. Chronic fatigue syndrome: modern concepts of etiology. Obesity and Metabolism. 2010;7(3):8–13. (In Russ.) https://doi.org/10.14341/2071-8713-4977.
6. Ivanova GE, Shmonin AA, Maltseva MN, Mishina IE, Melnikova EV, Bodrova RA et al. Methodical recommendations “Features of the course of Long-COVID-infection. Therapeutic and rehabilitation measures”. Therapy. 2022;(1 Suppl):1–147. (In Russ.) https://doi.org/10.18565/ therapy.2022.1suppl.1-147.
7. Korkmazov MYu, Lengina MA, Korkmasova M, Kravchenko AYu. Effect of post-COVID syndrome on the quality of life of patients with allergic rhinitis and eosinophilic phenotype of chronic polyposis rhinosinusitis. Medical Journal of the Russian Federation. 2023;29(4):277–290. (In Russ.) https://doi.org/10.17816/medjrf472079.
8. Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat Med. 2023;29(9):2347–2357. https://doi.org/10.1038/s41591-023-02521-2.
9. Munblit D, Nicholson T, Akrami A, Apfelbacher C , Chen J, De Groote W et al. A core outcome set for post-COVID-19 condition in adults for use in clinical practice and research: an international Delphi consensus study. Lancet Respir Med. 2022;10(7):715–724. https://doi.org/10.1016/S2213-2600(22)00169-2.
10. Baimukhambetova DV, Gorina AO, Rumyantsev MA, Shikhaleva AA, El-Taravi YaA, Bondarenko ED et al. Post-covid condition in adults and children. Pulmonologiya. 2021;31(5):562–570. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-5-562-570.
11. Wulf Hanson S, Abbafati C, Aerts JG, Al-Aly Z, Ashbaugh C, Ballouz T et al. Estimated global proportions of individuals with persistent fatigue, cognitive, and respiratory symptom clusters following symptomatic COVID-19 in 2020 and 2021. JAMA. 2022;328(16):1604–1615. https://doi.org/10.1001/jama.2022.18931.
12. Barker-Davies RM, O’Sullivan O, Senaratne KPP, Baker P, Cranley M, DharmDatta S et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br J Sports Med. 2020;54(16):949–959. https://doi.org/10.1136/bjsports-2020-102596.
13. Amenta EM, Spallone A, Rodriguez-Barradas MC, El Sahly HM, Atmar RL, Kulkarni PA. Postacute COVID-19: an overview and approach to classification. Open Forum Infect Dis. 2020;7(12):ofaa509. https://doi.org/10.1093/ofid/ofaa509.
14. Tenforde MW, Kim SS, Lindsell CJ, Billig Rose E, Shapiro NI, Files DC et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network – United States, March–June 2020. MMWR Morb Mortal Wkly Rep. 2020;69(30):993–998. https://doi.org/10.15585/mmwr.mm6930e1.
15. Bourmistrova NW, Solomon T, Braude P, Strawbridge R, Carter B. Long-term effects of COVID-19 on mental health: a systematic review. J Affect Disord. 2022;299:118–125. https://doi.org/10.1016/j.jad.2021.11.031.
16. Michelen M, Manoharan L, Elkheir N, Cheng V, Dagens A, Hastie C et al. Characterising long COVID: a living systematic review. BMJ Glob Health. 2021;6(9):e005427. https://doi.org/10.1136/bmjgh-2021-005427.
17. Namazova-Baranova LS. Coronavirus infection (COVID-19) in children (as of April 2020). Pediatric Pharmacology. 2020;17(2):85–94. (In Russ.) https://doi.org/10.15690/pf.v17i2.2094.
18. Lopez-Leon S, Wegman-Ostrosky T, Ayuzo Del Valle NC, Perelman C, Sepulveda R, Rebolledo PA et al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep. 2022;12(1):9950. https://doi.org/10.1038/s41598-022-13495-5.
19. Buonsenso D, Munblit D, De Rose C, Sinatti D, Ricchiuto A, Carfi A, Valentini P. Preliminary evidence on long COVID in children. Acta Paediatr. 2021;110(7):2208–2211. https://doi.org/10.1111/apa.15870.
20. Ahmed M, Advani S, Moreira A, Zoretic S, Martinez J, Chorath K et al. Multisystem inflammatory syndrome in children: a systematic review. EClinicalMedicine. 2020;26:100527. https://doi.org/10.1016/j.eclinm.2020.100527.
21. Korkmazov MY, Lengina MA, Dubinets ID, Korkmazov AM, Smirnov AA. Opportunities for correction of individual links of the pathogenesis of allergic rhinitis and bronchial asthma with assessment of the quality of life of patients. Meditsinskiy Sovet. 2022;(4):24–34. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-4-24-34.
22. Shchetinin SA, Gisinger OA, Korkmazov MYu. Clinical manifestations and dysfunctions of the immune status in children with chronic adenoiditis and methods of their correction using ozone therapy. Russian Journal of Immunology. 2015;9(3-1):255–257. (In Russ.) Available at: https://www.elibrary.ru/xaiqpr.
23. Tsampasian V, Elghazaly H, Chattopadhyay R, Debski M, Naing TKP, Garg P et al. Risk factors associated with post−COVID-19 condition: a systematic review and meta-analysis. JAMA Intern Med. 2023;183(6):566–580. https://doi.org/10.1001/jamainternmed.2023.0750.
24. Khisamova AA, Gizinger OA, Kornova NV, Zyryanova KS, Korkmazov AM, Beloshangin AS. Studies of immunological and microbiological efficiency of the therapy of curcumin and methionine in the developed capsules. Russian Journal of Immunology. 2021;24(2):305–310. (In Russ.) https://doi.org/10.46235/1028-7221-1001-SOI.
25. Dennis A, Wamil M, Alberts J, Oben J, Cuthbertson DJ, Wootton D et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open. 2021;11(3):е048391. https://doi.org/10.1101/2020.10.14.20212555.
26. Wong TL, Weitzer DJ. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) – a systematic review and comparison of clinical presentation and symptomatology. Medicina. 2021;57(5):418. https://doi.org/10.3390/medicina57050418.
27. Korkmazov MYu, Kazachkov EL, Lengina MA, Dubinets ID, Korkmazov AM. Cause-effect factors of rhinosinusitis poliposa development. Russian Rhinology. 2023;31(2):124–130. (In Russ.) https://doi.org/10.17116/rosrino202331021124.
28. Korkmazov MYu, Angelovich MS, Lengina MA, Belousov SYu. Clinical case of angiosarcoma of ethmoidal labyrinth and frontal sinus, issues of morphological verification of diagnosis. Vestnik Oto-Rino-Laringologii. 2022;87(4): 102–106. (In Russ.) https://doi.org/10.17116/otorino202287041102.
29. Shisheva AK, Korkmazov MYu. Socio-economic aspects hospital help optimization for patients with pathology of nose and paranasal sinuses in the large industrial city conditions. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Obrazovanie, Zdravookhranenie, Fizicheskaya Kultura. 2011;(26):62–66. Available at: https://elibrary.ru/oghxwh.
30. Sweetman E, Ryan M, Edgar C, MacKay A, Vallings R, Tate W. Changes in the transcriptome of circulating immune cells of a New Zealand cohort with myalgic encephalomyelitis/chronic fatigue syndrome. Int J Immunopathol Pharmacol. 2019;33:2058738418820402. https://doi.org/10.1177/2058738418820402.
31. Bilichenko TN. Post-COVID syndrome: risk factors, pathogenesis, diagnosis and treatment of patients with respiratory organ damage after COVID-19 (review of studies). RMJ. Medical Review. 2022;6(7):367–375. (In Russ.) https://doi.org/10.32364/2587-6821-2022-6-7-367-375.
32. Ehrenfeld M, Tincani A, Andreoli L, Cattalini A, Greenbaum A, Kanduc D et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020;19(8):102597. https://doi.org/10.1016/j.autrev.2020.102597.
33. Янова ЮК, АИ Крюкова, Дворянчикова ВВ, Носули ЕВ (ред.) Оториноларингология. Национальное руководство. Краткое издание. М.: ГЭОТАР-Медиа; 2024. 992 с. Режим доступа: https://www.geotar.ru/lots/NF0027772.html.
34. Curriu M, Carrillo J, Massanella M, Rigau J, Allegre J, Puig J et al. Screening NK-, Band T-cell phenotype and function in patients suffering from chronic fatigue syndrome. J Transl Med. 2013;11:68. https://doi.org/10.1186/1479-5876-11-68.
35. Hornig M, Montoya JG, Klimas NG, Levine S, Felsenstein D, Bateman L et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci Adv. 2015;1(1):e1400121. https://doi.org/10.1126/sciadv.1400121.
36. Mandarano AH, Maya J, Giloteaux L, Peterson DL, Maynard M, Gottschalk CG et al. Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. J Clin Invest. 2020;130(3):1491–1505. https://doi.org/10.1172/JCI132185.
37. Katafuchi T, Kondo T, Yasaka T, Kubo K, Take S, Yoshimura M. Prolonged effects of polyriboinosinic: polyribocytidylic acid on spontaneous running wheel activity and brain interferon-alpha mRNA in rats: a model for immunologically induced fatigue. Neuroscience. 2003;120(3):837–845. https://doi.org/10.1016/s0306-4522(03)00365-8.
38. Carlo-Stella N, Bozzini S, De Silvestri A, Sbarsi I, Pizzochero C, Lorusso L et al. Molecular study of receptor for advanced glycation endproduct gene promoter and identification of specific HLA haplotypes possibly involved in chronic fatigue syndrome. Int J Immunopathol Pharmacol 2009;22(3):745–754. https://doi.org/10.1177/039463200902200320.
39. Nishikai M, Tomomatsu S, Hankins RW, Takagi S, Miyachi K, Kosaka S, Akiya K. Autoantibodies to a 68/48 kDa protein in chronic fatigue syndrome and primary fibromyalgia: a possible marker for hypersomnia and cognitive disorders. Rheumatology. 2001;40(7):806–810. https://doi.org/10.1093/rheumatology/40.7.806.
40. Wirth K, Scheibenbogen C. A unifying hypothesis of the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): recognitions from the finding of autoantibodies against ß2-adrenergic receptors. Autoimmun Rev. 2020;19(6):102527. https://doi.org/10.1016/j.autrev.2020.102527.
41. De Bellis A, Bellastella G, Pernice V, Cirillo P, Longo M, Maio A et al. Hypothalamic-pituitary autoimmunity and related impairment of hormone secretions in chronic fatigue syndrome. J Clin Endocrinol Metab. 2021;106(12):e5147–e5155. https://doi.org/10.1210/clinem/dgab429.
42. Sotzny F, Blanco J, Capelli E, Castro-Marrero J, Steiner S, Murovska M et al. Myalgic encephalomyelitis/chronic fatigue syndrome – evidence for an autoimmune disease. Autoimmun Rev. 2018;17(6):601–609. https://doi.org/10.1016/j.autrev.2018.01.009.
43. Arron HE, Marsh BD, Kell DB, Khan JN, Jaeger BR, Pretorius E. Myalgic encephalomyelitis/chronic fatigue syndrome: the biology of a neglected disease. Front Immunol. 2024;15:1386607. https://doi.org/10.3389/fimmu.2024.1386607.
44. Mueller C, Lin JC, Sheriff S, Maudsley AA, Younger JW. Evidence of widespread metabolite abnormalities in myalgic encephalomyelitis/chronic fatigue syndrome: assessment with whole-brain magnetic resonance spectroscopy. Brain Imaging Behav. 2020;14(2):562–572. https://doi.org/10.1007/s11682-018-0029-4.
45. Dehlia A, Guthridge MA. The persistence of myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS) after SARS-CoV-2 infection: a systematic review and meta-analysis. J Infect. 2024;89(6):106297. https://doi.org/10.1016/j.jinf.2024.106297.
46. Korkmazov MYu, Lengina MA, Dubinets ID, Kravchenko AYu, Klepikov SV. Some immunological aspects of targeted therapy of polypous rhinosinusitis. Russian Journal of Immunology. 2023;26(3):301–306. (In Russ.) https://doi.org/10.46235/1028-7221-8955-SIA.
47. Gofman VV, Dvorynchikov VV. Bacteriological and immunological status in patients with chronic tonsillitis current position. Russian otorhinolaryngology. 2014;(2):19–23. (In Russ.) Available at: https://cyberleninka.ru/article/n/bakteriologicheskie-i-immunologicheskie-pokazateli-u-bolnyh-hronicheskim-tonzillitom-v-sovremennyh-usloviyah-1.
48. Korkmazov MYu, Yastremsky AP, Kornova NV, Lengina MA, Korkmazov AM. Therapeutic and diagnostic approaches in the treatment of chronic tonsillitis. Meditsinskiy Sovet. 2022;16(20):90–99. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-20-90-99.
49. Aghajani Mir M. Brain fog: a narrative review of the most common mysterious cognitive disorder in COVID-19. Mol Neurobiol. 2024;61(12):9915–9926. https://doi.org/10.1007/s12035-023-03715-y.
50. Raman B, Cassar MP, Tunnicliffe E, Filippini N, Griffanti L, Alfaro-Almagro F et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, posthospital discharge. EClinicalMedicine. 2021;31:100683. https://doi.org/10.1016/j.eclinm.2020.100683.
51. Salmon-Ceron D, Slama D, De Broucker T, Karmochkine M, Pavie J, Sorbets E et al. Clinical, virological and imaging profile in patients with prolonged forms of COVID-19: a cross-sectional study. J Infect. 2021;82(2):e1–e4. https://doi.org/10.1016/j.jinf.2020.12.002.
52. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301. https://doi.org/10.1101/2021.01.11.20248765.
53. Xiong Q, Xu M, Li J, Liu Y, Zhang J, Xu Y, Dong W. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin Microbiol Infect. 2021;27(1):89–95. https://doi.org/10.1016/j.cmi.2020.09.023.
54. Townsend L, Dyer AH, Jones K, Dunne J, Mooney A, Gaffney F et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE. 2020;15(11):e0240784. https://doi.org/10.1371/journal.pone.0240784.
55. Liu Y, Gu X, Li H, Zhang H, Xu J. Mechanisms of long COVID: an updated review. Chin Med J Pulm Crit Care Med. 2023;1(4):231–240. https://doi.org/ 10.1016/j.pccm.2023.10.003.
56. Vernon SD, Zheng T, Do H, Marconi VC, Jason LA, Singer NG et al. Incidence and prevalence of post-COVID-19 myalgic encephalomyelitis: a report from the observational RECOVER-Adult study. J Gen Intern Med. 2025;40(5):1085–1094. https://doi.org/10.1007/s11606-024-09290-9.
57. Ganesh R, Yadav S, Hurt RT, Mueller MR, Aakre CA, Gilman EA et al. Pro inflammatory cytokines profiles of patients with long COVID differ between variant epochs. J Prim Care Community Health. 2024;15:21501319241254751. https://doi.org/10.1177/21501319241254751.
Review
For citations:
Vasilkova DS, Pishchalnikov AY, Abramovskikh OS. Some parallels between chronic fatigue syndrome and post-COVID syndrome: The role of immune dysregulation. Meditsinskiy sovet = Medical Council. 2025;(20):71-81. (In Russ.) https://doi.org/10.21518/ms2025-510


































