Preview

Meditsinskiy sovet = Medical Council

Advanced search

Respiratory function dynamics in a patient with refractory AChR-seropositive myasthenia gravis under eculizumab treatment: A case report

https://doi.org/doi.org/10.21518/ms2025-528

Abstract

Myasthenia gravis (MG) is an autoimmune disease characterized by the formation of antibodies to the postsynaptic membrane of the neuromuscular junction in voluntary muscles. Among all manifestations of MG, the most severe is respiratory dysfunction, which results from the weakness of the diaphragm, intercostal and accessory muscles, as well as pharyngeal and laryngeal muscles. An analysis of respiratory disorders was conducted in a 29-year-old female patient suffering from highly active, refractory, generalized MG with juvenile onset and anti-acetylcholine receptor antibodies. Parameters of spirometry, impulse oscillometry, lung diffusion capacity (DLCO), and respiratory muscle strength were studied. Significant impairment of respiratory muscle strength was revealed, along with signs of bronchial asthma with predominant small airway involvement, which is likely an autoimmune comorbid condition and represents a non-eosinophilic endotype of airway inflammation. The patient began receiving targeted immunological therapy for myasthenia with monoclonal antibodies against the C5 complement component. After the initiation of therapy, a dynamic functional assessment of the respiratory system was conducted, revealing an improvement in respiratory function based on parameters such as vital capacity, forced vital capacity and forced expiratory volume in one second, and DLCO, which highlights the role of complement inhibitors in treating neuromuscular dysfunction. However, parameters of inspiratory and expiratory muscle strength (maximal inspiratory and expiratory pressures, MIP and MEP) did not change. Pulmonary function testing is essential for clarifying the state of the respiratory system and muscle strength, ruling out concomitant lung and bronchial pathology, while dynamic assessment of respiratory parameters allows for objective evaluation of the efficacy of targeted therapy.

About the Authors

S. B. Stepanova
South Ural State Medical University
Russian Federation

Svetlana B. Stepanova, Cand. Sci. (Med.), Associate Professor of the Department of Nervous Diseases 

64, Vorovskiy St., Chelyabinsk, 454092



V. S. Belogorokhov
South Ural State Medical University
Russian Federation

Veniamin S. Belogorokhov, Senior Laboratory Assistant, Institute of Pulmonology 

64, Vorovskiy St., Chelyabinsk, 454092



M. I. Karpova
South Ural State Medical University
Russian Federation

Maria I. Karpova, Dr. Sci. (Med.), Head of the Department of Nervous Diseases 

64, Vorovskiy St., Chelyabinsk, 454092



V. N. Antonov
South Ural State Medical University
Russian Federation

Vladimir N. Antonov, Dr. Sci. (Med.), Professor of the Department of Therapy, Institute of Additional Professional Education 

64, Vorovskiy St., Chelyabinsk, 454092

 



G. L. Ignatova
South Ural State Medical University
Russian Federation

Galina L. Ignatova, Dr. Sci. (Med.), Head of the Department of Therapy, Institute of Additional Professional Education

64, Vorovskiy St., Chelyabinsk, 454092



O. V. Rodionova
South Ural State Medical University
Russian Federation

Olga V. Rodionova, Cand. Sci. (Med.), Associate Professor of the Department of Therapy, Institute of Additional Professional Education 

64, Vorovskiy St., Chelyabinsk, 454092



D. K. Romanova
South Ural State Medical University
Russian Federation

Daria K. Romanova, Resident of the Department of Nervous Diseases 

64, Vorovskiy St., Chelyabinsk, 454092



References

1. Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. Nat Rev Dis Primers. 2019;5(1):30. https://doi.org/10.1038/s41572-019-0079-y.

2. San PP, Jacob S. Role of complement in myasthenia gravis. Front Neurol. 2023;14:1277596. https://doi.org/10.3389/fneur.2023.1277596.

3. Gilhus NE. Myasthenia gravis, respiratory function, and respiratory tract disease. J Neurol. 2023;270(7):3329–3340. https://doi.org/10.1007/s00415-023-11733-y.

4. Zaytsevskaya SA, Suponeva NA, Antonova KV, Grishina DA, Narbut AM. Steroid myopathy in patients with myasthenia gravis: a literature review. Nervno-Myshechnye Bolezni. 2024;14(3):90–101. (In Russ.) https://doi.org/10.17650/2222-8721-2024-14-3-90-101.

5. Octaviana F, Safri AY, Wiratman W, Indrawati LA, Fadli N, Hakim M. Pulmonary Function Assessment in Myasthenia Gravis Patients in a National Referral Hospital in Indonesia. Int J Gen Med. 2023;16:4477–4483. https://doi.org/10.2147/ijgm.s426321.

6. Aguirre F, Fernández RN, Arrejoría RM, Manin A, Cores VE, Sivori M, Villa AM. Peak expiratory flow and the single-breath count test as markers of respiratory function in patients with myasthenia gravis. Neurologia. 2023;38(6):405–411. https://doi.org/10.1016/j.nrleng.2020.09.006.

7. Kuroiwa R, Shibuya K, Inagaki T, Nara T, Nemoto M, Dоi Y et al. Reliability and validity of cough peak flow measurements in myasthenia gravis. Neuromuscul Disord. 2024;41:29–34. https://doi.org/10.1016/j.nmd.2024.06.003.

8. Iliaz S, Yunisova G, Cakmak OO, Celebi O, Bulus E, Duman A et al. The clinical use of impulse oscillometry in neuromuscular diseases. Respir Med. 2022;200:106931. https://doi.org/10.1016/j.rmed.2022.106931.

9. King GG, Bates J, Berger KI, Calverley P, de Melo PL, Dellacà RL et al. Technical standards for respiratory oscillometry. Eur Respir J. 2020;55(2):1900753. https://doi.org/10.1183/13993003.00753-2019.

10. Wolfe GI, Herbelin L, Nations SP, Foster B, Bryan WW, Barohn RJ. Myasthenia gravis activities of daily living profile. Neurology. 1999;52(7):1487–1489. https://doi.org/10.1212/wnl.52.7.1487.

11. Meisel A, Keller CW, Hoffmann S, Wiendl H. S2k-Leitlinie: Diagnostik und Therapie myasthener Syndrome. DGNeurologie. 2023;6:307–324. https://doi.org/10.1007/s42451-023-00568-6.

12. Smith HJ, Reinhold P, Goldman MD. Forced oscillation technique and impulse oscillometry. In: Stam H, Gosselink R (eds.). Lung Function Testing (ERS Monograph). Sheffield: European Respiratory Society; 2005, pp. 72–105. https://doi.org/10.1183/1025448x.00031005.

13. Toumpanakis D, Usmani OS. Small airways in asthma: Pathophysiology, identification and management. Chin Med J Pulm Crit Care Med. 2023;1(3):171–180. https://doi.org/10.1016/j.pccm.2023.07.002.

14. Hoffmann S, Harms L, Schuelke M, Rückert JC, Goebel HH, Stenzel W, Meisel A. Complement deposition at the neuromuscular junction in seronegative myasthenia gravis. Acta Neuropathol. 2020;139(6):1119–1122. https://doi.org/10.1007/s00401-020-02147-5.

15. Song J, Huan X, Chen Y, Luo Y, Zhong H, Wang Y et al. The safety and efficacy profile of eculizumab in myasthenic crisis: a prospective small case series. Ther Adv Neurol Disord. 2024;17:17562864241261602. https://doi.org/10.1177/17562864241261602.

16. Binks SNM, Morse IM, Ashraghi M, Vincent A, Waters P, Leite MI. Myasthenia gravis in 2025: five new things and four hopes for the future. J Neurol. 2025;272(3):226. https://doi.org/10.1007/s00415-025-12922-7.


Review

For citations:


Stepanova SB, Belogorokhov VS, Karpova MI, Antonov VN, Ignatova GL, Rodionova OV, Romanova DK. Respiratory function dynamics in a patient with refractory AChR-seropositive myasthenia gravis under eculizumab treatment: A case report. Meditsinskiy sovet = Medical Council. 2025;(20):187-192. (In Russ.) https://doi.org/doi.org/10.21518/ms2025-528

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)