Preview

Meditsinskiy sovet = Medical Council

Advanced search

Vitamin D status, VDR genetic polymorphisms and fecal markers of intestinal mucosal permeability in children with food allergy

https://doi.org/10.21518/ms2025-189

Abstract

Introduction. Knowing the patient’s genetic profile, it is possible to predict the likelihood of developing food allergies.

Aim. The study was to conduct a study in children with allergic enteropathy: vitamin D levels, genotypic distribution of polymorphic variants of the VDR gene, the content of fecal biomarkers (zonulin, I-FABP and b-defensin 2).

Materials and methods. The study included 30 toddlers: 15 children with allergic enteropathy (main group) and 15 healthy children (control group). In the blood serum, 25(OH)D was determined by enzyme immunoassay, and the real-time polymerase chain reaction method was used to identify VDR gene polymorphisms. The content of fecal biomarkers (zonulin, b-defensin 2, I-FABP) was estimated in coprofiltrates using the enzyme-linked immunosorbent assay method.

Results. There was a statistically significant decrease in the level of 25(OH)D in children of the main group compared with healthy children (21.4 ng/ml and 32.4 ng/ml, respectively, p = 0.006). In the coprofiltrates of children in the main group, an increase in the concentration of zonulin, b-defensin 2 and I-FABP was noted compared to the control (1.6 ng/ml and 0.6 ng/ml (p < 0.001), 0.3 ng/ml and 0.1 ng/ml (p = 0.003), 0.42 ng/ml, and 0.19 ng/ml (p < 0.001), respectively). In children with allergic enteropathy, a high frequency of occurrence of the homozygous genotype T/T polymorphism TaqI (rs731236) of the VDR gene has been recorded. The content of 25(OH)D is inversely correlated with b-defensin 2 and I-FABP (rs = – 0.673, p < 0.001 and rs = – 0.399, p = 0.029, respectively).

Conclusions. In patients with allergic enteropathy, insufficient levels of 25(OH)D, increased concentrations of the studied markers in feces, and an increased prevalence of the homozygous T/T genotype of the TaqI polymorphic variant (rs731236) of the VDR gene were detected.

About the Authors

D. V. Kovalenko
Pacific State Medical University
Russian Federation

Darya V. Kovalenko - Assistant of the Institute of Pediatrics, Pacific State Medical University.

2, Ostryakov Ave., Vladivostok, 690002



T. A. Shumatova
Pacific State Medical University
Russian Federation

Tatyana A. Shumatova - Dr. Sci. (Med.), Professor, Director of the Institute of Pediatrics, Pacific State Medical University.

2, Ostryakov Ave., Vladivostok, 690002



References

1. Warren CM, Sehgal S, Sicherer SH, Gupta RS. Epidemiology and the Growing Epidemic of Food Allergy in Children and Adults Across the Globe. Curr Allergy Asthma Rep. 2024;24(3):95–106. https://doi.org/10.1007/s11882-023-01120-y.

2. Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141(1):41–58. https://doi.org/10.1016/j.jaci.2017.11.003.

3. Lyons SA, Clausen M, Knulst AC, Ballmer-Weber BK, Fernandez-Rivas M, Barreales L et al. Prevalence of Food Sensitization and Food Allergy in Children Across Europe. J Allergy Clin Immunol Pract. 2020;8(8):2736–2746. e9. https://doi.org/10.1016/j.jaip.2020.04.020.

4. Calvani M, Anania C, Caffarelli C, Martelli A, Miraglia Del Giudice M, Cravidi C et al. Food allergy: an updated review on pathogenesis, diagnosis, prevention and management. Acta Biomed. 2020;91(11-S):e2020012. https://doi.org/10.23750/abm.v91i11-S.10316.

5. Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr Rev. 2019;40(4):1109–1151. https://doi.org/10.1210/er.2018-00126.

6. Fakhoury HMA, Kvietys PR, AlKattan W, Anouti FA, Elahi MA, Karras SN, Grant WB. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol. 2020;200:105663. https://doi.org/10.1016/j.jsbmb.2020.105663.

7. Wu J, Zhong Y, Shen X, Yang K, Cai W. Maternal and early-life vitamin D deficiency enhances allergic reaction in an ovalbumin-sensitized BALB/c mouse model. Food Nutr Res. 2018;62:1401. https://doi.org/10.29219/fnr.v62.1401.

8. Wollenberg A, Seba A, Antal AS. Immunological and molecular targets of atopic dermatitis treatment. Br J Dermatol. 2014;170(1):7–11. https://doi.org/10.1111/bjd.12975.

9. Seethaler B, Basrai M, Neyrinck AM, Nazare JA, Walter J, Delzenne NM, Bischoff SC. Biomarkers for assessment of intestinal permeability in clinical practice. Am J Physiol Gastrointest Liver Physiol. 2021;321(1):G11–G17. https://doi.org/10.1152/ajpgi.00113.2021.

10. Schoultz I, Keita ÅV. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells. 2020;9(8):1909. https://doi.org/10.3390/cells9081909.

11. Schroeder F, Jolly CA, Cho TH, Frolov A. Fatty acid binding protein isoforms: structure and function. Chem Phys Lipids. 1998;92(1):1–25. https://doi.org/10.1016/s0009-3084(98)00003-6.

12. Rehman N, Pandey A. Insight of Intestinal Fatty Acid Binding Protein as a Potential Biomarker in the Biology of Epithelial Damage of Gastrointestinal Membrane. Curr Protein Pept Sci. 2025;26(5):321–333. https://doi.org/10.2174/0113892037311290240930054913.

13. Zvyagin AA, Bavykina IA, Nastausheva TL, Bavykin DV. Intestinal Fatty Acid Binding Protein as the Promising Marker of Small Intestine Permeability. Russian Bulletin of Perinatology and Pediatrics. 2020;65(6):29–33. (In Russ.) https://doi.org/10.21508/1027-4065-2020-65-6-29-33.

14. Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA. 2009;106(39):16799–804. https://doi.org/10.1073/pnas.0906773106.

15. Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4):e1251384. https://doi.org/10.1080/21688370.2016.1251384.

16. Tajik N, Frech M, Schulz O, Schälter F, Lucas S, Azizov V et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun. 2020;11(1):1995. https://doi.org/10.1038/s41467-020-15831-7.

17. Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response. Cells. 2021;10(11):2991. https://doi.org/10.3390/cells10112991.

18. Štrajtenberger M, Stipić-Marković A, Barac E, Artuković M, Lugović-Mihić L. Human β-defensin 2: a connection between infections and allergic skin diseases. Acta Dermatovenerol Alp Pannonica Adriat. 2024;33(3):135–139. Available at: https://pubmed.ncbi.nlm.nih.gov/39324351.

19. Hossein-Nezhad A, Eshaghi SM, Maghbooli Z, Mirzaei K, Shirzad M, Curletto B, Chen TC. The role of vitamin D deficiency and vitamin d receptor genotypes on the degree of collateralization in patients with suspected coronary artery disease. Biomed Res Int. 2014;2014:304250. https://doi.org/10.1155/2014/304250.

20. Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A. 1998;85(10):3294–3298. https://doi.org/10.1073/pnas.85.10.3294.

21. Zhumina AG, Khodkov AV, Sakenova ZT, Pogosyan GP. VDR gene expression and leukemia development. Scientific Review. Biological Science. 2016;(4):21–25. (In Russ.) Available at: https://science-biology.ru/ru/article/view?id=1008.

22. Kozlov AI, Vershubskaya GG, Negasheva MA. Polymorphism of vitamin D receptor (VDR) gene in sampling of European Russia and Priuraliye population. Perm Medical Journal. 2016;33(5):60–66. (In Russ.) Available at: https://permmedjournal.ru/PMJ/article/view/5711/4486.

23. Valdivielso JM, Fernandez E. Vitamin D receptor polymorphisms and diseases. Clin Chim Acta. 2006;371(1-2):1–12. https://doi.org/10.1016/j.cca.2006.02.016.

24. Allen KJ, Koplin JJ, Ponsonby AL, Gurrin LC, Wake M, Vuillermin P et al. Vitamin D insufficiency is associated with challenge-proven food allergy in infants. J Allergy Clin Immunol. 2013;131(4):1109–1116. https://doi.org/10.1016/j.jaci.2013.01.017.

25. Matsui T, Tanaka K, Nakagawa T, Sasaki K, Nakata J, Sugiura S et al. Sun exposure inversely related to food sensitization during infancy. Pediatr Allergy Immunol. 2015;26(7):628–633. https://doi.org/10.1111/pai.12445.

26. Guerini FR, Bolognesi E, Chiappedi M, Mensi MM, Fumagalli O, Rogantini C et al. Vitamin D Receptor Polymorphisms Associated with Autism Spectrum Disorder. Autism Res. 2020;13(5):680–690. https://doi.org/10.1002/aur.2279.

27. Whitfield GK, Remus LS, Jurutka PW, Zitzer H, Oza AK, Dang HT et al. Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol. 2001;177(1-2):145–159. https://doi.org/10.1016/s0303-7207(01)00406-3.

28. Shumatova TA, Kovalenko DV, Prikhodchenko NG. Vitamin D and intestinal diseases. International Journal of Applied and Basic Research. 2023;(8):24–28. (In Russ.) https://doi.org/10.17513/mjpfi.13566.

29. Tsukita S, Tanaka H, Tamura A. The Claudins: From Tight Junctions to Biological Systems. Trends Biochem Sci. 2019;44(2):141–152. https://doi.org/10.1016/j.tibs.2018.09.008.

30. Capaldo CT, Powell DN, Kalman D. Layered defense: how mucus and tight junctions seal the intestinal barrier. J Mol Med. 2017;95(9):927–934. https://doi.org/10.1007/s00109-017-1557-x.

31. Zhang L, Zhang S, He C, Wang X. VDR Gene Polymorphisms and Allergic Diseases: Evidence from a Meta-analysis. Immunol Invest. 2020;49(1-2):166–177. https://doi.org/10.1080/08820139.2019.1674325.

32. DaFonte TM, Valitutti F, Kenyon V, Locascio JJ, Montuori M, Francavilla R et al. Zonulin as a Biomarker for the Development of Celiac Disease. Pediatrics. 2024;153(1):e2023063050. https://doi.org/10.1542/peds.2023-063050.

33. Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006;41(4):408–419. https://doi.org/10.1080/00365520500235334.

34. Meisch JP, Nishimura M, Vogel RM, Sung HC, Bednarchik BA, Ghosh SK et al. Human β-defensin 3 peptide is increased and redistributed in Crohn’s ileitis. Inflamm Bowel Dis. 2013;19(5):942–953. https://doi.org/10.1097/ MIB.0b013e318280b11a.

35. Huang X, Zhou Y, Sun Y, Wang Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog Lipid Res. 2022;87:101178. https://doi.org/10.1016/j.plipres.2022.101178.

36. Terrin G, Stronati L, Cucchiara S, De Curtis M. Serum Markers of Necrotizing Enterocolitis: A Systematic Review. J Pediatr Gastroenterol Nutr. 2017;65(6):e120–e132. https://doi.org/10.1097/MPG.0000000000001588.

37. Bykova SV, Sabelnikova EA, Novikov AA, Baulo EV, Khomeriki SG, Parfenov AI. Zonulin and I-FABP are markers of enterocyte damage in celiac disease. Terapevticheskii Arkhiv. 2022;94(4):511–516. (In Russ.) https://doi.org/10.26442/00403660.2022.04.201480.


Review

For citations:


Kovalenko DV, Shumatova TA. Vitamin D status, VDR genetic polymorphisms and fecal markers of intestinal mucosal permeability in children with food allergy. Meditsinskiy sovet = Medical Council. 2025;(11):151-156. (In Russ.) https://doi.org/10.21518/ms2025-189

Views: 139


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)